Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset

人工智能 放大倍数 计算机科学 模式识别(心理学) 分类 深度学习 算法
作者
Bhupendra,Kriz Moses,Ankur Miglani,Pavan Kumar Kankar
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:195: 106811-106811 被引量:70
标识
DOI:10.1016/j.compag.2022.106811
摘要

• Damage classification of milled rice grains is demonstrated using fine-tuned deep CNN models. • High-magnification dataset of 8048 images consisting of seven types of rice grain damages is constructed. • Five state-of-the-art CNN models (EfficientNet-B0, ResNet-50, InceptionV3, MobileNetV2, MobileNetV3) used for damage classification. • EfficientNet-B0 is the best performing CNN model with an overall classification accuracy of 98.32 % • EfficientNet-B0 successfully classifies the chalky damaged rice further into three subclasses. Surface quality evaluation of pre-processed rice grains is a key factor in determining their market acceptance, storage stability, processing quality, and the overall customer approval. On one end the conventional methods of surface quality evaluation are time-intensive, subjective, and inconsistent. On the other end, the current methods are limited to either sorting of healthy rice grains from the damaged ones, without classifying the latter, or focusing on segregating the different types of rice. A detailed classification of damage in milled rice grains has been largely unexplored due to the lack of an extensive labelled image dataset and the application of advanced CNN models thereon; that enables quick, accurate, and precise classification by excelling at end-to-end tasks, minimizing pre-processing, and eliminating the need for manual feature extraction. In this study, a machine vision system is developed to first construct a dataset of 8048 high-magnification (4.5 x) images of damaged rice refractions, that are obtained through the on-field collection. The dataset spans across seven damage classes, namely, healthy, full chalky, chalky discolored, half chalky, broken, discolored, and normal damage. Subsequently, five different state-of-the-art memory efficient Deep-CNN models, namely, EfficientNet-B0, ResNet-50, InceptionV3, MobileNetV2, and MobileNetV3 are adopted and fine-tuned to enable damage classification of milled rice grains. Experimental results show that the EfficientNet-B0 is the best performing model in terms of the accuracy, average recall, precision, and F1-score. It achieves an individual class accuracy of 98.33%, 96.51%, 95.45%, 100%, 100%, 99.26%, and 98.72% for healthy, full chalky, chalky discolored, half chalky, broken, discolored, and normal damage class respectively. The EfficientNet-B0 architecture achieves an overall classification accuracy of 98.37 % with a significantly reduced model size (47 MB) and a small prediction time of 0.122 s and can sub-classify the chalky class further into 3 different classes i.e. , full chalky, half chalky, and chalky discolored. Overall, this study demonstrates the Deep CNN architectures applied to a high-magnification image dataset enables the classification of damaged rice grains with high accuracy, which could be utilized as a tool for better and more objective quality assessment of the damaged rice grains at market and trading locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yyyyyy完成签到,获得积分10
刚刚
ltyuli发布了新的文献求助10
1秒前
嗯啊完成签到,获得积分10
1秒前
ML发布了新的文献求助10
3秒前
3秒前
4秒前
张洪旗完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
popvich应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
我是你哥完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助老年人采纳,获得10
7秒前
7秒前
风趣小蜜蜂完成签到 ,获得积分10
8秒前
沙心应助33333采纳,获得10
9秒前
侯雨丹完成签到,获得积分20
9秒前
蔡蔡发布了新的文献求助10
10秒前
12秒前
终梦应助神勇秋白采纳,获得10
13秒前
阳光的朝雪完成签到,获得积分10
14秒前
执着续发布了新的文献求助10
14秒前
狂野吐司完成签到 ,获得积分10
17秒前
17秒前
momo发布了新的文献求助30
17秒前
KeYang完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543