Boosting whale optimization with evolution strategy and Gaussian random walks: an image segmentation method

局部最优 水准点(测量) 计算机科学 鲸鱼 数学优化 分割 人工智能 进化策略 群体智能 进化算法 利用 Boosting(机器学习) 趋同(经济学) 粒子群优化 算法 模式识别(心理学) 数学 地理 生物 经济 经济增长 大地测量学 计算机安全 渔业
作者
Abdelazim G. Hussien,Ali Asghar Heidari,Xiaojia Ye,Guoxi Liang,Huiling Chen,Zhifang Pan
出处
期刊:Engineering With Computers [Springer Science+Business Media]
卷期号:39 (3): 1935-1979 被引量:100
标识
DOI:10.1007/s00366-021-01542-0
摘要

Stochastic optimization has been found in many applications, especially for several local optima problems, because of their ability to explore and exploit various zones of the feature space regardless of their disadvantage of immature convergence and stagnation. Whale optimization algorithm (WOA) is a recent algorithm from the swarm-intelligence family developed in 2016 that attempts to inspire the humpback whale foraging activities. However, the original WOA suffers from getting trapped in the suboptimal regions and slow convergence rate. In this study, we try to overcome these limitations by revisiting the components of the WOA with the evolutionary cores of Gaussian walk, CMA-ES, and evolution strategy that appeared in Virus colony search (VCS). In the proposed algorithm VCSWOA, cores of the VCS are utilized as an exploitation engine, whereas the cores of WOA are devoted to the exploratory phases. To evaluate the resulted framework, 30 benchmark functions from IEEE CEC2017 are used in addition to four different constrained engineering problems. Furthermore, the enhanced variant has been applied in image segmentation, where eight images are utilized, and they are compared with various WOA variants. The comprehensive test and the detailed results show that the new structure has alleviated the central shortcomings of WOA, and we witnessed a significant performance for the proposed VCSWOA compared to other peers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风来发布了新的文献求助10
1秒前
天天快乐应助冬雾采纳,获得10
1秒前
昏睡的蟠桃应助舒适路人采纳,获得80
1秒前
小马能发sci完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
我是老大应助TYJ采纳,获得10
4秒前
Smilegate发布了新的文献求助10
4秒前
小岁月太着急完成签到,获得积分10
5秒前
传奇3应助ABC采纳,获得30
5秒前
pifu完成签到,获得积分10
5秒前
科研通AI5应助饱满小兔子采纳,获得10
6秒前
FC发布了新的文献求助10
6秒前
6秒前
hjhhjh完成签到,获得积分10
6秒前
Sea_U发布了新的文献求助30
7秒前
6260发布了新的文献求助10
7秒前
7秒前
完美世界应助迷人依白采纳,获得10
7秒前
8秒前
liuke完成签到,获得积分10
8秒前
9秒前
思源应助荔枝采纳,获得100
10秒前
MYYY完成签到,获得积分10
10秒前
fvsuar完成签到,获得积分10
10秒前
Min发布了新的文献求助10
10秒前
10秒前
清脆安南完成签到 ,获得积分10
10秒前
Pipper发布了新的文献求助20
12秒前
628完成签到,获得积分10
12秒前
ww发布了新的文献求助10
12秒前
Ooo完成签到,获得积分10
13秒前
superxiao应助舒适路人采纳,获得10
13秒前
wjw发布了新的文献求助10
14秒前
14秒前
15秒前
jailbreaker完成签到 ,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137