Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications

人工神经网络 可预测性 燃烧热 生物量(生态学) 近邻 价值(数学) 环境科学 数学 生化工程 工艺工程 计算机科学 化学 机器学习 统计 有机化学 工程类 食品科学 生物 农学 燃烧
作者
Fatih Güleç,Direnc Pekaslan,Orla Williams,Edward Lester
出处
期刊:Fuel [Elsevier]
卷期号:320: 123944-123944 被引量:66
标识
DOI:10.1016/j.fuel.2022.123944
摘要

Higher heating value (HHV) is a key characteristic for the assessment and selection of biomass feedstocks as a fuel source. The HHV is usually measured using an adiabatic oxygen bomb calorimeter; however, this method can be time consuming and expensive. In response, researchers have attempted to use artificial neural network (ANN) systems to predict HHV using proximate and ultimate analysis data, but these efforts were hampered by varying case specific approaches and methodologies. Based on the complex ANN structures, a clear state of the art ANN understanding must be required for the prediction of biomass HHV. This study provides a comprehensive ANN application for HHV prediction in terms of how the activation functions, algorithms, hidden layers, dataset, and randomisation of the dataset affects the prediction of HHV of biomass feedstocks. In this paper we present a comparative qualitative and quantitative analysis of thirteen different algorithms, four different activation functions (logsig, tansig, poslin, purelin) with a wide range of hidden layer (3–15) for ANN models, used to predict the HHV of the biomass feedstocks. ANN models trained by the combination of ultimate-proximate analyses (UAPA) datasets provided more accurate predictions than the models trained by ultimate analysis or proximate analysis datasets. Regardless of the used datasets, sigmoidal activation functions (tansig and logsig) provide better prediction results than linear activation function (poslin and purelin). Furthermore, as training activation functions, “Levenberg-Marquardt (lm)” and “Bayesian Regularization (br)” algorithms provide the best HHV prediction. The best average correlation coefficients of 30 randomised run were observed with tansig as 0.962 and 0.876 for the ANN model developed by the UAPA dataset with a relatively high confidence levels of ∼96% for training and ∼92% for testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
着急的滑板应助danielsong采纳,获得80
1秒前
dili827完成签到,获得积分20
1秒前
Yy发布了新的文献求助10
1秒前
酷波er应助平头小混混采纳,获得10
1秒前
王帅发布了新的文献求助10
1秒前
2秒前
万能图书馆应助M95采纳,获得10
2秒前
yyy发布了新的文献求助10
2秒前
好名字发布了新的文献求助10
2秒前
陌回发布了新的文献求助10
2秒前
烟花应助SAMSUNG采纳,获得10
2秒前
Vivian发布了新的文献求助10
2秒前
yooloo发布了新的文献求助10
2秒前
Aulalala完成签到,获得积分10
2秒前
2秒前
小蘑菇应助顾北采纳,获得10
3秒前
笨笨凡之发布了新的文献求助30
3秒前
千澈完成签到,获得积分10
3秒前
chestnut完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
xiaxia应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
xiaxia应助科研通管家采纳,获得10
5秒前
ttm完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
从容的念真完成签到,获得积分10
5秒前
今后应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
Jared应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得20
5秒前
55155255应助科研通管家采纳,获得20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671