计算机科学
量化(信号处理)
混合信号集成电路
计算
转换器
计算机体系结构
模拟电子学
人工神经网络
网络拓扑
背景(考古学)
电子线路
利用
计算机工程
数字信号处理
半导体存储器
计算机硬件
电子工程
人工智能
集成电路
电气工程
工程类
算法
电压
古生物学
操作系统
生物
计算机安全
作者
Michele Caselli,Peter Debacker,Andrea Boni
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2022-05-12
卷期号:69 (7): 3084-3089
被引量:10
标识
DOI:10.1109/tcsii.2022.3174622
摘要
This tutorial focuses on memory elements and analog/digital (A/D) interfaces used in mixed-signal accelerators for deep neural networks (DNNs) in machine learning (ML) applications. These very dedicated systems exploit analog in-memory computation (AiMC) of weights and input activations to accelerate the DNN algorithm. The co-optimization of the memory cell storing the weights with the peripheral circuits is mandatory for improving the performance metrics of the accelerator. In this tutorial, four memory devices for AiMC are reported and analyzed with their computation scheme, including the digital-to-analog converter (DAC). Moreover, we review analog-to-digital converters (ADCs) for the quantization of the AiMC results, focusing on the design trade-offs of the different topologies given by the context.
科研通智能强力驱动
Strongly Powered by AbleSci AI