Machine learning (ML)–enabled, circulating tumor cell–based classification of patients for non-prerequisite adjuvant therapy.

医学 头颈部鳞状细胞癌 辅助治疗 内科学 肿瘤科 佐剂 对数秩检验 机器学习 头颈部癌 癌症 生存分析 计算机科学
作者
Gowhar Shafi,Anuradha Ramesh,Krithika Srinivasan,Atul Bharde,Burhanuddin Qayyumi,Gourishankar Aland,Sreeja Jayant,Alain D’Souza,Aravindan Vasudevan,Mohan Uttarwar,Pankaj Chaturvedi,Jayant Khandare
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:40 (16_suppl): 1547-1547 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.1547
摘要

1547 Background: Oncology implicates highest precision using next generation diagnostics and progressive therapies assisted by predictive tools. If validated clinically, machine learning (ML) can provide better insights in precision oncology. Furthermore, it longitudinally may stratify the progression of cancer disease burden in a real time. We have developed, Circulating Tumor Cells (CTCs) driven ML model as a predictor for the treatment decision strategy for both surgery and adjuvant therapy in head and neck squamous cell carcinoma (HNSCC) patients. Methods: In this study, a total of 380 HNSCC patients who underwent either surgery alone or surgery plus adjuvant therapy were accounted for. CTCs in patients were stratified based on clinicopathological parameters and using OncoDiscover platform having anti EpCAM antibody system regulated by the Drug Controller of India. Following this, we explored the predictive performance of the ML model on the usefulness of adjuvant therapy in HNSCC patients after the surgery. The available data was randomly divided into two subsets. First, 75%, of the original data was applied for Training the ML, and rest 25% of the data was used as a Test set. Survival curves were generated by Kaplan–Meier method and calculated through the Log rank test. Results: XGBoost machine learning classifier was superior to Random Forest and SVM-based analyses in predicting the usefulness of adjuvant therapy post-surgery using CTC alone or in combination with other clinical parameters in HNSCC patients. Machine learning algorithms were compared for predicting the accuracy of patients stratification. The results for each model were: XGBoost model (Accuracy = 0.84, ROC value = 0.73, Kappa = 0.43); Random Forest model (Accuracy = 0.81 ROC value = 0.70, Kappa = 0.41); SVM model (Accuracy = 0.76, ROC value = 0. 69, Kappa = 0.40). The ROC value of the XGBoost model was highest (0.73) while the ROC value for the SVM model was lower (0.69). We observed that when CTCs were combined with clinicopathological parameters, the accuracy, kappa values and AUC-ROC drastically improved in predicting the usefulness of adjuvant therapy post-surgery. A similar trend was observed when CTCs were combined with clinicopathological parameters in predicting the line of chemotherapy, post-surgery. Conclusions: ML-enabled, CTCs driven predictions can be highly accurate and ascertain the patient treatments. CTCs can be a positive predictor for selecting patient’s treatment regimen in both surgery as well in type of treatment (e.g. surgery alone or surgery + adjuvant therapy). It can also implicate to classify the patients and determine who necessitates an additional adjuvant therapy. Further investigations in this direction are necessary to predict the treatment options based on ML that may improve the overall survival of cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
机灵的煎蛋完成签到 ,获得积分10
2秒前
听雨完成签到,获得积分10
2秒前
Think发布了新的文献求助10
2秒前
个性尔白发布了新的文献求助10
2秒前
武琳捷完成签到,获得积分10
2秒前
光亮盼柳发布了新的文献求助10
4秒前
英俊的铭应助yyhh采纳,获得10
4秒前
yier完成签到,获得积分10
4秒前
小巧凝丹发布了新的文献求助10
5秒前
7秒前
zho应助MY采纳,获得10
8秒前
8秒前
8秒前
8秒前
顾矜应助冯123采纳,获得10
9秒前
谨慎紫霜发布了新的文献求助10
9秒前
平常的毛豆应助MeilingLi采纳,获得30
10秒前
善学以致用应助坦率道之采纳,获得10
10秒前
脑洞疼应助cherish采纳,获得10
10秒前
英格兰胖头鱼完成签到 ,获得积分10
10秒前
12秒前
12秒前
123完成签到,获得积分10
12秒前
zhaoxiaonuan发布了新的文献求助10
12秒前
14秒前
科研通AI2S应助感动世倌采纳,获得10
14秒前
天天快乐应助David采纳,获得10
14秒前
灿烂发布了新的文献求助30
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
小巧凝丹完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767