An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease

过度拟合 卷积神经网络 人工智能 计算机科学 一般化 模式识别(心理学) 机制(生物学) 人工神经网络 网络模型 集合(抽象数据类型) 试验装置 钥匙(锁) 计算机视觉 数学 计算机安全 数学分析 哲学 认识论 程序设计语言
作者
Jiangtao Qi,Xiangnan Liu,Kai Liu,Farong Xu,Guo Hui,Xinliang Tian,Mao Li,Zhiyuan Bao,Yang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106780-106780 被引量:266
标识
DOI:10.1016/j.compag.2022.106780
摘要

• A deep learning model based on attention mechanism is proposed for tomato virus disease recognition. • The recognition accuracy is improved while maintaining the same detection speed. • It provides technical support for other researches related to plant disease recognition. Traditional target detection methods cannot effectively screen key features, which leads to overfitting and produces a model with a weak generalization ability. In this paper, an improved SE-YOLOv5 network model is proposed for the recognition of tomato virus diseases. Images of tomato diseases in greenhouses were collected using a mobile phone, and the collected images were expanded. A squeeze-and-excitation (SE) module was added to a YOLOv5 model to realize the extraction of key features, using a human visual attention mechanism for reference. The trained network model was evaluated on the test set of tomato virus diseases. The accuracy was 91.07%, which was 7.12%, 17.85% and 8.91% higher than that of the Faster regions with convolutional neural network features (R-CNN) model, single-shot multiBox detector (SSD) model and YOLOv5 model, respectively. Meanwhile, the mean average precision (mAP @0.5 ) was 94.10%, which was 1.23%, 16.77% and 1.78% higher than that of the Faster R-CNN model, SSD model and YOLOv5 model. The proposed SE-YOLOv5 model can effectively detect regions of tomato virus disease, which provides disease identification and control theoretical research and technical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗霄山完成签到,获得积分10
1秒前
科研通AI6应助Svanur采纳,获得10
2秒前
hcx完成签到 ,获得积分10
3秒前
yyang完成签到,获得积分10
9秒前
雨天慢行完成签到 ,获得积分10
9秒前
风风是枫枫完成签到,获得积分10
10秒前
细胞应助阳光的千萍采纳,获得20
10秒前
10秒前
月光完成签到 ,获得积分10
12秒前
12秒前
田様应助嘚嘚采纳,获得10
13秒前
科研通AI2S应助1234采纳,获得10
13秒前
研友_Z6Qrbn发布了新的文献求助10
22秒前
paper完成签到 ,获得积分10
24秒前
Luna完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
yuzhecheng发布了新的文献求助10
31秒前
31秒前
nkcyn发布了新的文献求助10
32秒前
嘚嘚发布了新的文献求助10
33秒前
hhy完成签到 ,获得积分10
33秒前
jiangcai完成签到,获得积分0
37秒前
suiwuya完成签到,获得积分10
37秒前
安彦超完成签到,获得积分10
38秒前
CodeCraft应助活力夜白采纳,获得30
41秒前
46秒前
科研通AI5应助sisi采纳,获得10
48秒前
Wsw发布了新的文献求助10
51秒前
搜集达人应助细心菲鹰采纳,获得10
53秒前
53秒前
54秒前
活力夜白完成签到,获得积分10
56秒前
西西发布了新的文献求助40
58秒前
伶俐的金连完成签到 ,获得积分10
58秒前
活力夜白发布了新的文献求助30
59秒前
1分钟前
带象完成签到,获得积分10
1分钟前
刘佳发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784551
求助须知:如何正确求助?哪些是违规求助? 4111791
关于积分的说明 12720731
捐赠科研通 3836495
什么是DOI,文献DOI怎么找? 2115374
邀请新用户注册赠送积分活动 1138370
关于科研通互助平台的介绍 1024339