清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity

曲折 分级(工程) 人工智能 计算机科学 医学 材料科学 土木工程 多孔性 工程类 复合材料
作者
Lei Mou,Hong Qi,Yonghuai Liu,Yalin Zheng,Peter Matthew,Pan Su,Jiang Liu,Jiong Zhang,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2079-2091 被引量:10
标识
DOI:10.1109/tmi.2022.3156906
摘要

Accurate estimation and quantification of the corneal nerve fiber tortuosity in corneal confocal microscopy (CCM) is of great importance for disease understanding and clinical decision-making. However, the grading of corneal nerve tortuosity remains a great challenge due to the lack of agreements on the definition and quantification of tortuosity. In this paper, we propose a fully automated deep learning method that performs image-level tortuosity grading of corneal nerves, which is based on CCM images and segmented corneal nerves to further improve the grading accuracy with interpretability principles. The proposed method consists of two stages: 1) A pre-trained feature extraction backbone over ImageNet is fine-tuned with a proposed novel bilinear attention (BA) module for the prediction of the regions of interest (ROIs) and coarse grading of the image. The BA module enhances the ability of the network to model long-range dependencies and global contexts of nerve fibers by capturing second-order statistics of high-level features. 2) An auxiliary tortuosity grading network (AuxNet) is proposed to obtain an auxiliary grading over the identified ROIs, enabling the coarse and additional gradings to be finally fused together for more accurate final results. The experimental results show that our method surpasses existing methods in tortuosity grading, and achieves an overall accuracy of 85.64% in four-level classification. We also validate it over a clinical dataset, and the statistical analysis demonstrates a significant difference of tortuosity levels between healthy control and diabetes group. We have released a dataset with 1500 CCM images and their manual annotations of four tortuosity levels for public access. The code is available at: https://github.com/iMED-Lab/TortuosityGrading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Arvin发布了新的文献求助10
8秒前
zzzwhy完成签到,获得积分10
12秒前
r93527005完成签到,获得积分10
20秒前
快发论文完成签到,获得积分20
31秒前
快发论文发布了新的文献求助20
38秒前
qinghe完成签到 ,获得积分10
44秒前
繁荣的安白完成签到 ,获得积分10
1分钟前
依霏完成签到,获得积分10
1分钟前
1分钟前
long发布了新的文献求助10
1分钟前
Wan完成签到,获得积分10
2分钟前
2分钟前
lhl完成签到,获得积分0
2分钟前
2分钟前
2分钟前
cadcae完成签到,获得积分10
2分钟前
huco完成签到,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
浮游应助王贤平采纳,获得10
2分钟前
科科通通完成签到,获得积分10
3分钟前
www完成签到 ,获得积分10
3分钟前
刘玲完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助王贤平采纳,获得10
3分钟前
静静完成签到 ,获得积分10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
内向的雅山应助香菜张采纳,获得10
3分钟前
李爱国应助香菜张采纳,获得50
3分钟前
王贤平完成签到,获得积分10
4分钟前
美好灵寒完成签到 ,获得积分10
4分钟前
long发布了新的文献求助10
4分钟前
4分钟前
4分钟前
dx完成签到,获得积分10
4分钟前
debu9完成签到,获得积分10
4分钟前
自然亦凝完成签到,获得积分10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
上官若男应助科研通管家采纳,获得50
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534583
求助须知:如何正确求助?哪些是违规求助? 4622588
关于积分的说明 14582660
捐赠科研通 4562738
什么是DOI,文献DOI怎么找? 2500362
邀请新用户注册赠送积分活动 1479864
关于科研通互助平台的介绍 1451095