清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing aerial imagery collection and processing parameters for drone-based individual tree mapping in structurally complex conifer forests

无人机 航空影像 树(集合论) 航拍照片 航测 遥感 计算机科学 人工智能 地图学 地理 林业 数学 生物 遗传学 数学分析
作者
Derek J. N. Young,Michael J. Koontz,Jonah Weeks
标识
DOI:10.32942/osf.io/p7ygu
摘要

Recent advances in remotely piloted aerial systems (“drones”) and imagery processing enable individual tree mapping in forests across broad areas with low-cost equipment and minimal ground-based data collection. One such method involves collecting many partially overlapping aerial photos, processing them using “structure from motion” (SfM) photogrammetry to create a digital 3D representation, and using the 3D model to detect individual trees. SfM-based forest mapping involves myriad decisions surrounding methods and parameters for imagery acquisition and processing, but it is unclear how these individual decisions or their combinations impact the quality of the resulting forest inventories.\n\nWe collected and processed drone imagery of a moderate-density, structurally complex mixed-conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch, and image overlap), 12 imagery processing parameterizations (image resolutions and depth map filtering intensities), and 286 tree detection methods (algorithms and their parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23-ha ground reference map of 1,775 trees > 5 m tall that we created using traditional field survey methods.\n\nThe accuracy of individual tree detection (ITD) and the resulting tree maps was generally maximized by collecting imagery at high altitude (120 m) with at least 90% image-to-image overlap, photogrammetrically processing images into a canopy height model (CHM) with a 2-fold upscaling (coarsening) step, and detecting trees from the CHM using a variable window filter after applying a moving-window mean smooth to the CHM. Using this combination of methods, we mapped trees with an accuracy exceeding expectations for structurally complex forests (for overstory trees > 10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely measured tree heights corresponded to ground-measured heights with R2 = 0.95. Accuracy was higher for taller trees and lower for understory trees, and would likely be higher in less dense and less structurally complex stands.\n\nOur results may guide others wishing to efficiently produce broad-extent individual-tree maps of conifer forests without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree maps create opportunities for addressing previously intractable ecological questions and informing forest management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lling完成签到 ,获得积分10
3秒前
随心所欲完成签到 ,获得积分10
10秒前
56秒前
伯劳发布了新的文献求助10
2分钟前
neversay4ever完成签到 ,获得积分10
2分钟前
计划完成签到,获得积分10
2分钟前
dalei001完成签到 ,获得积分10
2分钟前
li完成签到 ,获得积分10
2分钟前
Alisha完成签到,获得积分10
2分钟前
T723完成签到 ,获得积分10
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
悠树里完成签到,获得积分10
3分钟前
4分钟前
飘逸剑发布了新的文献求助10
4分钟前
无极2023完成签到 ,获得积分10
4分钟前
大个应助飘逸剑采纳,获得10
4分钟前
小马甲应助飞翔的企鹅采纳,获得20
5分钟前
5分钟前
taster发布了新的文献求助10
5分钟前
情怀应助taster采纳,获得10
5分钟前
5分钟前
5分钟前
飞翔的企鹅完成签到,获得积分10
6分钟前
6分钟前
静静完成签到,获得积分10
6分钟前
勤奋流沙完成签到 ,获得积分10
6分钟前
6分钟前
要减肥的春天完成签到,获得积分10
7分钟前
yong完成签到 ,获得积分10
7分钟前
万能图书馆应助1577采纳,获得10
7分钟前
7分钟前
1577发布了新的文献求助10
7分钟前
1577完成签到,获得积分10
8分钟前
wangermazi完成签到,获得积分0
8分钟前
独特的师完成签到,获得积分10
8分钟前
8分钟前
kukudou2发布了新的文献求助10
8分钟前
9分钟前
9分钟前
独特的师发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364