Document-Level Biomedical Relation Extraction with Generative Adversarial Network and Dual-Attention Multi-Instance Learning

关系抽取 计算机科学 关系(数据库) 生成语法 判决 自然语言处理 人工智能 情报检索 透视图(图形) 信息抽取 生成模型 对偶(语法数字) 图形 数据挖掘 理论计算机科学 语言学 哲学
作者
Lishuang Li,Ruiyuan Lian,Hongbin Lü
标识
DOI:10.1109/bibm52615.2021.9669590
摘要

Document-level relation extraction (RE) aims to extract relations among entities within a document, which is more complex than its sentence-level counterpart, especially in biomedical text mining. Chemical-disease relation (CDR) extraction aims to extract complex semantic relationships between chemicals and diseases entities in documents. In order to identify the relations within and across multiple sentences at the same time, existing methods try to build different document-level heterogeneous graph. However, the entity relation representations captured by these models do not make full use of the document information and disregard the noise introduced in the process of integrating various information. In this paper, we propose a novel model DAM-GAN to document-level biomedical RE, which can extract entity-level and mention-level representations of relation instances with R-GCN and Dual-Attention Multi-Instance Learning (DAM) respectively, and eliminate the noise with Generative Adversarial Network (GAN). Entity-level representations of relation instances model the semantic information of all entity pairs from the perspective of the whole document, while the mention-level representations from the perspective of mention pairs related to these entity pairs in different sentences. Therefore, entity- and mention-level representations can be better integrated to represent relation instances. Experimental results demonstrate that our model achieves superior performance on public document-level biomedical RE dataset BioCreative V Chemical Disease Relation(CDR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
2秒前
ding应助ln采纳,获得10
3秒前
清爽的又夏给清爽的又夏的求助进行了留言
4秒前
小崽总完成签到,获得积分10
4秒前
Ari发布了新的文献求助10
5秒前
Orange应助ComeOn采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
祯果粒完成签到,获得积分10
7秒前
8秒前
无心的行云完成签到,获得积分10
8秒前
10秒前
李爱国应助海王星采纳,获得10
10秒前
wyx发布了新的文献求助10
10秒前
wanci应助文艺从彤采纳,获得10
11秒前
爱学习完成签到,获得积分20
11秒前
11秒前
勤劳绿柳发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
Ari完成签到,获得积分20
13秒前
iiiid完成签到,获得积分10
13秒前
xiao张完成签到,获得积分20
13秒前
14秒前
Kypsi完成签到,获得积分10
14秒前
xiaohaitao完成签到,获得积分10
14秒前
星辰大海应助琮博采纳,获得10
17秒前
Erling发布了新的文献求助10
17秒前
17秒前
乐乐应助南瓜采纳,获得10
18秒前
PANGHU发布了新的文献求助50
18秒前
Linyi完成签到,获得积分10
19秒前
hygge发布了新的文献求助10
19秒前
19秒前
科研通AI5应助good233采纳,获得30
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786765
求助须知:如何正确求助?哪些是违规求助? 3332391
关于积分的说明 10255589
捐赠科研通 3047754
什么是DOI,文献DOI怎么找? 1672681
邀请新用户注册赠送积分活动 801523
科研通“疑难数据库(出版商)”最低求助积分说明 760240