数学
整数(计算机科学)
组合数学
序列(生物学)
区间(图论)
航程(航空)
分布(数学)
作者
Kui Liu,Igor E. Shparlinski,Tianping Zhang
出处
期刊:Acta Arithmetica
[Polish Academy of Sciences]
日期:2017-01-01
卷期号:181 (3): 239-252
被引量:4
标识
DOI:10.4064/aa8644-8-2017
摘要
We study the distribution of squares in a Piatetski-Shapiro sequence $\left(\lfloor n^c\rfloor\right)_{n\in\mathbb N}$ with $c>1$ and $c\not\in\mathbb N$. We also study more general equations $\lfloor{n^c}\rfloor = sm^2$, $n,m\in \mathbb N$, $1\le n \le N$ for an integer $s$ and obtain several bounds on the number of solutions for a fixed $s$ and on average over $s$ in an interval. These results are based on various techniques chosen depending on the range of the parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI