五三肽重复
脱落酸
生物
拟南芥
突变体
开花位点C
野生型
互补
抑制因子
遗传学
基因
细胞生物学
基因表达
作者
Hossein Emami,Frank Kempken
出处
期刊:Plant Journal
[Wiley]
日期:2019-07-25
卷期号:100 (2): 265-278
被引量:25
摘要
Flowering is a vital developmental shift in plants from vegetative to reproductive phase. The timing of this shift is regulated by various linked genetic pathways including environmental cues and internal regulation. Here we report a role for an Arabidopsis gene, AT1G15480, which encodes a P-class pentatricopeptide repeat (PPR) protein, affecting flowering time. We show that AT1G15480 is localized to mitochondria. An AT1G15480 T-DNA insertion line exhibits an early-flowering phenotype, which is quite a rare phenotype among PPR mutants. The early-flowering phenotype was observed under both long and short days compared with wild type plants. Genetic complementation confirmed the observed phenotype. We therefore named the PPR protein PRECOCIOUS1 (POCO1). poco1 plants showed lower respiration, ATP content and higher accumulation of superoxide. Importantly, the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression of FLOWERING LOCUS C (FLC), which is a key floral repressor, was strongly downregulated in the poco1. Likewise, the expression level of the FLC positive regulator ABSCISIC ACID-INSENSITIVE 5 (ABI5) was reduced in the poco1. Consistent with the qRT-PCR results, poco1 plants showed reduced sensitivity to abscisic acid compared with wild type with respect to primary root growth and days to flowering. Furthermore, the poco1 mutation enhances the sensitivity to drought stress. Further analysis showed that POCO1 affects mitochondrial RNA editing. Taken together, our data demonstrate a remarkable function of POCO1 in flowering time and the abscisic acid signalling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI