Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis

电催化剂 纳米材料 纳米技术 材料科学 表面工程 催化作用 电极 表面改性 吸附 化学工程 化学 电化学 生物化学 工程类 物理化学 有机化学
作者
Pengzuo Chen,Yun Tong,Changzheng Wu,Yi Xie
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (11): 2857-2866 被引量:188
标识
DOI:10.1021/acs.accounts.8b00266
摘要

Exploitation of highly active and cost-effective electrode materials for the design of new types of renewable energy storage and conversion systems has been tremendously stimulated by the higher attention being paid to global energy security and invention of alternative clean sustainable energy technologies. Low-dimensional solid materials with special atomic and electronic structures are deemed desirable platforms for establishing clear relationships between surface/interface structure characteristics and electrocatalytic activity, representing enormous potential in the pursuit of high-performance electrocatalysts. Recent achievements revealed that surface and interfacial atomic engineering is capable of achieving novel physical and chemical properties as well as superior synergistic effects in inorganic low-dimensional nanomaterials for electrocatalysis. Compared to bulk counterparts, the electronic structure in the surface of inorganic low-dimensional nanomaterials is more sensitive to and can thus be regulated more easily by surface and interfacial modification strategies, resulting in greatly optimized electrocatalytic performance. In this Account, we focus on recent progress in surface and interfacial modification strategies to efficaciously engineer the electrocatalytic performance of inorganic low-dimensional electrode materials. We summarize several important regulation strategies of dimensional confinement, incorporation, surface reconstruction, interface modulation, and defect engineering, which immensely optimize the spin configuration, electrical conductivity, catalytic active site exposure, and reaction energy barrier of inorganic electrode material. At dimensionally confined atomic-scale thickness, more surface-facet atoms are exposed as active sites, which provide an ideal platform for applying surface incorporation and defect engineering, subsequently producing more catalytic active sites and better adsorption free energy for the improvement of catalytic activity. Moreover, regulation of the interfacial character of electrode materials, such as the surface strain, contact area, and bridged bonds, can optimize the electron transfer capacity and reaction kinetics process. On the other hand, once exposed to a strong alkaline solution under oxidizing potentials, the real active layer of electrode materials (such as transition-metal sulfides, nitrides, and phosphides) could be activated by a surface reconstruction strategy, realizing a unique core-shell structure with a highly conductive electron transfer channel inside and highly active catalytic sites outside for electrocatalysis. Based on these points of view, focusing on inorganic low-dimensional electrode materials, the proper choice of surface and interfacial modification strategies would effectively modulate their electrocatalytic activity, realizing unlimited potential applications in promising areas of electrocatalytic water splitting, rechargeable metal batteries, and fuel cells. Overall, we anticipate that surface and interfacial regulation approaches can provide a new understanding of the design of inorganic electrode materials, facilitating the rapid promotion of electrocatalytic performance in electrode materials for electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研ZZ发布了新的文献求助10
刚刚
1秒前
翻水水发布了新的文献求助10
2秒前
andy完成签到,获得积分10
2秒前
ku发布了新的文献求助10
5秒前
7秒前
7秒前
酷酷的锁完成签到,获得积分10
9秒前
xunzhi完成签到 ,获得积分10
9秒前
慧妞完成签到 ,获得积分20
9秒前
开朗黑猫完成签到 ,获得积分10
10秒前
Chaos_Law完成签到 ,获得积分10
10秒前
赘婿应助zz采纳,获得10
10秒前
luo发布了新的文献求助60
11秒前
runrunrun123发布了新的文献求助10
12秒前
ku完成签到,获得积分10
12秒前
joxes发布了新的文献求助10
13秒前
清茶完成签到,获得积分10
13秒前
lnan完成签到,获得积分10
14秒前
18秒前
20秒前
26秒前
哭泣青梦完成签到,获得积分10
26秒前
赘婿应助joxes采纳,获得10
26秒前
ora4ks完成签到 ,获得积分10
26秒前
桐桐应助漫漫采纳,获得10
29秒前
30秒前
glaciersu完成签到,获得积分10
33秒前
刘卫朋完成签到,获得积分10
35秒前
36秒前
blue发布了新的文献求助10
36秒前
bkagyin应助招财小茗采纳,获得10
38秒前
luo发布了新的文献求助30
39秒前
领导范儿应助娇气的友易采纳,获得10
41秒前
漫漫发布了新的文献求助10
42秒前
天天快乐应助哭泣青梦采纳,获得10
42秒前
44秒前
pygxy完成签到,获得积分10
44秒前
joxes完成签到,获得积分10
45秒前
不安青牛应助图图采纳,获得10
46秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394210
求助须知:如何正确求助?哪些是违规求助? 2097989
关于积分的说明 5286630
捐赠科研通 1825442
什么是DOI,文献DOI怎么找? 910185
版权声明 559960
科研通“疑难数据库(出版商)”最低求助积分说明 486453