Burn wound classification model using spatial frequency-domain imaging and machine learning

模式识别(心理学) 深度学习 卷积神经网络 学习迁移 上下文图像分类 人工神经网络 特征提取 随机森林
作者
Rebecca A. Rowland,Adrien Ponticorvo,Melissa L. Baldado,Gordon T. Kennedy,David M. Burmeister,Robert J. Christy,Nicole P. Bernal,Anthony J. Durkin
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:24 (5): 1-9 被引量:15
标识
DOI:10.1117/1.jbo.24.5.056007
摘要

Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have been used to examine tissue properties to infer burn severity. Spatial frequency-domain imaging (SFDI) has also been used to characterize burns based on the relationships between histologic observations and changes in tissue properties. Recently, machine learning has been used to classify burns by combining optical features from multispectral or hyperspectral imaging. Rather than employ models of light propagation to deduce tissue optical properties, we investigated the feasibility of using SFDI reflectance data at multiple spatial frequencies, with a support vector machine (SVM) classifier, to predict severity in a porcine model of graded burns. Calibrated reflectance images were collected using SFDI at eight wavelengths (471 to 851 nm) and five spatial frequencies (0 to 0.2  mm  -  1). Three models were built from subsets of this initial dataset. The first subset included data taken at all wavelengths with the planar (0  mm  -  1) spatial frequency, the second comprised data at all wavelengths and spatial frequencies, and the third used all collected data at values relative to unburned tissue. These data subsets were used to train and test cubic SVM models, and compared against burn status 28 days after injury. Model accuracy was established through leave-one-out cross-validation testing. The model based on images obtained at all wavelengths and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy. The model composed of all values relative to unburned skin was 94.4% accurate. By comparison, the model that employed only planar illumination was 88.8% accurate. This investigation suggests that the combination of SFDI with machine learning has potential for accurately predicting burn severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助wangxin采纳,获得10
刚刚
2秒前
有魅力哈密瓜完成签到,获得积分10
4秒前
动听的老鼠完成签到 ,获得积分10
4秒前
SciGPT应助Sor采纳,获得10
5秒前
10秒前
小蘑菇应助30采纳,获得10
12秒前
天天发布了新的文献求助10
13秒前
Sor发布了新的文献求助10
16秒前
沉静的时光完成签到 ,获得积分10
17秒前
哈哈发布了新的文献求助150
18秒前
19秒前
科研通AI5应助峡星牙采纳,获得10
21秒前
LK完成签到,获得积分10
29秒前
29秒前
Sunziy完成签到,获得积分10
29秒前
万能图书馆应助103921wjk采纳,获得10
30秒前
土豪的摩托完成签到 ,获得积分10
31秒前
穆奕完成签到 ,获得积分10
31秒前
cyr完成签到,获得积分10
32秒前
顺心牛排发布了新的文献求助10
36秒前
36秒前
36秒前
103921wjk发布了新的文献求助10
40秒前
慕青应助顺心牛排采纳,获得10
42秒前
柳浪完成签到,获得积分10
42秒前
天天下雨发布了新的文献求助10
43秒前
46秒前
杨怡羊完成签到 ,获得积分10
47秒前
48秒前
48秒前
CodeCraft应助张秋雨采纳,获得10
49秒前
49秒前
甘草三七完成签到,获得积分10
50秒前
51秒前
52秒前
54秒前
张嘟嘟发布了新的文献求助10
57秒前
峡星牙发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440