Curvature‐Induced Anisotropy Drives Broadband Magnetic Loss and Ultra‐Strong Microwave Absorption

材料科学 磁晶各向异性 微波食品加热 宽带 各向异性 消散 阻抗匹配 凝聚态物理 反射损耗 光电子学 磁各向异性 磁畴 带宽(计算) 磁导率 电磁辐射 光学 格子(音乐) 电磁屏蔽 联轴节(管道) 核磁共振 毫米 地平面 磁致伸缩 感应耦合 微电子机械系统 插入损耗 磁场 电阻抗 超材料 放松(心理学)
作者
Jiaxun Hu,Weiran Yan,Xiangyun Huang,C YI,Fangzhou Pan,Lin Xiao,Juan Wang,Wenfeng Wang,Ding Zhao,Huifeng Zeng,Qikui Man,Mei Wu,Guoguo Tan,Xiao Chi
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202531603
摘要

ABSTRACT Magnetic absorbers are often limited by intrinsic anisotropy and rigid domain configurations, which restrict relaxation pathways and deteriorate bandwidth and efficiency. Here, we introduce a stress‐modulation strategy that harnesses curvature‐induced residual compressive stress in hollow Y 2 Fe 17 to engineer lattice strain, amplify orbital moments, and fragment magnetic domains, thereby enabling broadband and strong microwave absorption. Gas‐atomized hollow particles exhibit localized lattice contraction and atomic‐scale disorder along their inner shell, giving rise to dense, curved domain walls and pronounced gradients in magnetocrystalline anisotropy. The resulting stress‐induced anisotropy coupling significantly enhances the imaginary component of the permeability over 2–18 GHz, thereby promoting impedance matching and enabling multiple internal reflections. As a result, the material achieves an ultralow reflection loss of −72.5 dB and an effective absorption bandwidth of 7.5 GHz at a slim thickness of 2.1 mm. Finite‐element simulations further reveal that electromagnetic dissipation is spatially concentrated at the stressed inner shell, establishing a direct link between geometry, stress, and broadband magnetic attenuation. Our work introduces internal‐stress‐driven domain engineering as a composition‐independent paradigm for designing lightweight, broadband, and high‐efficiency microwave absorbers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助热情的咖啡豆采纳,获得10
刚刚
英姑应助有你就足够采纳,获得10
1秒前
1秒前
脑洞疼应助深情夏彤采纳,获得10
2秒前
杏林靴子完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
领导范儿应助崽崽采纳,获得10
4秒前
merry关注了科研通微信公众号
5秒前
6秒前
6秒前
6秒前
7秒前
万灵竹完成签到,获得积分10
7秒前
xixi发布了新的文献求助10
8秒前
万灵竹发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
小汤完成签到,获得积分10
10秒前
liuhuayaxi发布了新的文献求助10
11秒前
lxl完成签到,获得积分10
12秒前
CipherSage应助hhl采纳,获得10
12秒前
高贵冷松完成签到,获得积分10
12秒前
Jasper应助普鲁斯特采纳,获得10
12秒前
12秒前
13秒前
小糊涂发布了新的文献求助10
13秒前
淡然的尔珍完成签到,获得积分10
13秒前
15秒前
miaomiao发布了新的文献求助10
16秒前
李N发布了新的文献求助10
16秒前
16秒前
Owen应助lxl采纳,获得10
16秒前
高贵冷松发布了新的文献求助10
16秒前
子车茗应助小陈同学采纳,获得20
17秒前
SciGPT应助机智的明雪采纳,获得10
17秒前
软柿子bdc发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186