Anodic Oxidation of Carbon and Electrolyte with Different Conducting Salts in High-Voltage Lithium-Ion Batteries Studied By Online Electrochemical Mass Spectrometry

电化学 电解质 锂(药物) 阳极 阴极 无机化学 化学 化学工程 材料科学 电极 分析化学(期刊) 有机化学 医学 工程类 内分泌学 物理化学
作者
Michael Metzger,Patrick Walke,Benjamin Strehle,Sophie Solchenbach,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (3): 322-322 被引量:1
标识
DOI:10.1149/ma2016-02/3/322
摘要

Recently, many research activities have been devoted to the development of near 5 V cathode materials, e.g. the LiMn 1.5 Ni 0.5 O 4 spinel, in order to raise the energy density of lithium-ion batteries and to allow for longer driving ranges of battery electric vehicles. 1 However, the enhanced degradation of carbon and electrolyte by the use of these high-voltage cathodes could not be mitigated so far. It was demonstrated recently by On-line Electrochemical Mass Spectrometry (OEMS), 2 that the anodic oxidation of conductive carbon, carbon coatings, and electrolyte at ≈5.0 V can be substantial at high temperature and in the presence of trace water, posing significant challenges for the implementation of 5 V cathode materials. 3,4 While these studies were done with LiClO 4 as conducting salt in order to study the effect of H 2 O addition on oxidation without side reactions of salt and water, e.g. HF formation, we want to investigate now to which extent the lithium salt can influence gas generation at high voltage. We employ our newly developed two-compartment cell in which anode and cathode compartments are separated by a Li + -ion conducting solid electrolyte (Ohara glass) laminated with aluminum and polypropylene foil, so that the gas evolution from degradation processes at high voltage can be studied selectively for the positive electrode without cross-diffusion of reaction products and gas generation from the counter-electrode, thereby enabling a more detailed analysis of the decomposition pathways. 5 This is a major advance over conventional cells, where the gases come from both electrodes, and thus do not allow a deconvolution of the simultaneously occurring reactions from anode and cathode. Furthermore, OEMS is used to compare three types of lithium salts in terms of their influence on the anodic stability (close to 5 V) of electrolyte and conductive carbon in the battery cell. These are the commercially used salt LiPF 6 , the sulfur- and nitrogen-containing LiTFSI, and the fluorine-free and oxygen-containing compound LiClO 4 . The salts are mixed with ethylene carbonate (EC) at a concentration of 1.5 M, so that linear carbonates like EMC or DMC which have a much higher vapor pressure than EC can be avoided, allowing for precise signal quantification in OEMS. 3 The comparison of the salts will be done on the basis of the CO/CO 2 gas evolution monitored by OEMS at various temperatures between 25 and 60°C. We employ a fully 13 C-labeled carbon electrode to deconvolute the CO/CO 2 evolution from electrolyte oxidation ( 12 C) from that of the conductive carbon oxidation ( 13 C). We quantify our OEMS results using a calibration gas, and give both, quantitative and mechanistic insights into the effect of the conducting salt on gas evolution in high-voltage lithium-ion batteries. By quantification of both CO/CO 2 isotopes we determine the molar oxidation rate and the weight loss of electrolyte and carbon due to anodic oxidation. In summary, this study elucidates to which extent the lithium salt can influence gas generation at high voltage and might allow to deduce design principles for the synthesis of novel electrolyte salts. Figure 1 shows in the upper panel the current-potential profiles of 13 C-carbon//lithium half-cells with the three different conducting salts at 1.5 M in EC upon a linear potential sweep from OCV to 5.5 V vs. Li/Li + . The corresponding evolution of both isotopes of CO 2 (solid lines) and CO (dotted lines) for the electrolyte oxidation and the 13 C-carbon oxidation are shown in the middle panel and the lower panel, respectively. References O. Gröger et al., J. Electrochem. Soc. , 162 , A2605 (2015). N. Tsiouvaras et al., J. Electrochem. Soc. , 160 , A471 (2013). M. Metzger et al., J. Electrochem. Soc. , 162 , A1123 (2015). M. Metzger et al., J. Electrochem. Soc. , 162 , A1227 (2015). M. Metzger et al., J. Electrochem. Soc. , 163 , A798 (2016). Acknowledgement The authors gratefully acknowledge BASF SE for financial support of this research through the framework of its Scientific Network on Electrochemistry and Batteries. Figure 1. Carbon and electrolyte oxidation upon linear potential sweep from OCV to 5.5 V vs. Li/Li + at 0.1 mV/s with a 13 C-carbon working-electrode and a metallic lithium counter-electrode for an EC-based electrolyte with 1.5 M LiClO 4 , LiPF 6 , or LiTFSI, respectively. (a) Current-potential profile, (b) 12 CO/ 12 CO 2 from electrolyte oxidation, (c) 13 CO/ 13 CO 2 from carbon oxidation. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaojiu完成签到 ,获得积分10
刚刚
所所应助beacom采纳,获得10
刚刚
失眠双双发布了新的文献求助10
1秒前
年轻的逍遥完成签到,获得积分10
1秒前
呆呆不呆Zz完成签到,获得积分10
3秒前
可爱的函函应助hkh采纳,获得10
3秒前
星黛露完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
keyakey关注了科研通微信公众号
4秒前
称心曼安应助沉默士萧采纳,获得10
4秒前
贺雯莉发布了新的文献求助10
4秒前
SCI发布了新的文献求助10
5秒前
5秒前
贪玩白开水完成签到,获得积分10
5秒前
xx发布了新的文献求助10
5秒前
wangjie发布了新的文献求助10
6秒前
6秒前
认真三问完成签到,获得积分10
6秒前
程程发布了新的文献求助10
7秒前
7秒前
Janus完成签到,获得积分10
7秒前
王木木完成签到,获得积分10
8秒前
8秒前
zSmart发布了新的文献求助10
9秒前
wangli发布了新的文献求助10
10秒前
科研通AI5应助LJW采纳,获得10
10秒前
hexy629完成签到,获得积分10
11秒前
11秒前
xx完成签到,获得积分10
12秒前
HEIKU应助大外科小伊森采纳,获得20
13秒前
小二郎应助ss采纳,获得10
13秒前
zyb发布了新的文献求助10
13秒前
14秒前
15秒前
碳烤小肥肠完成签到,获得积分10
15秒前
每天都好困完成签到,获得积分10
16秒前
16秒前
良辰应助努力学习采纳,获得10
16秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817349
求助须知:如何正确求助?哪些是违规求助? 3360735
关于积分的说明 10409073
捐赠科研通 3078857
什么是DOI,文献DOI怎么找? 1690789
邀请新用户注册赠送积分活动 814164
科研通“疑难数据库(出版商)”最低求助积分说明 768050