Anodic Oxidation of Carbon and Electrolyte with Different Conducting Salts in High-Voltage Lithium-Ion Batteries Studied By Online Electrochemical Mass Spectrometry

电化学 电解质 锂(药物) 阳极 阴极 无机化学 化学 化学工程 材料科学 电极 分析化学(期刊) 有机化学 医学 物理化学 内分泌学 工程类
作者
Michael Metzger,Patrick Walke,Benjamin Strehle,Sophie Solchenbach,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (3): 322-322 被引量:1
标识
DOI:10.1149/ma2016-02/3/322
摘要

Recently, many research activities have been devoted to the development of near 5 V cathode materials, e.g. the LiMn 1.5 Ni 0.5 O 4 spinel, in order to raise the energy density of lithium-ion batteries and to allow for longer driving ranges of battery electric vehicles. 1 However, the enhanced degradation of carbon and electrolyte by the use of these high-voltage cathodes could not be mitigated so far. It was demonstrated recently by On-line Electrochemical Mass Spectrometry (OEMS), 2 that the anodic oxidation of conductive carbon, carbon coatings, and electrolyte at ≈5.0 V can be substantial at high temperature and in the presence of trace water, posing significant challenges for the implementation of 5 V cathode materials. 3,4 While these studies were done with LiClO 4 as conducting salt in order to study the effect of H 2 O addition on oxidation without side reactions of salt and water, e.g. HF formation, we want to investigate now to which extent the lithium salt can influence gas generation at high voltage. We employ our newly developed two-compartment cell in which anode and cathode compartments are separated by a Li + -ion conducting solid electrolyte (Ohara glass) laminated with aluminum and polypropylene foil, so that the gas evolution from degradation processes at high voltage can be studied selectively for the positive electrode without cross-diffusion of reaction products and gas generation from the counter-electrode, thereby enabling a more detailed analysis of the decomposition pathways. 5 This is a major advance over conventional cells, where the gases come from both electrodes, and thus do not allow a deconvolution of the simultaneously occurring reactions from anode and cathode. Furthermore, OEMS is used to compare three types of lithium salts in terms of their influence on the anodic stability (close to 5 V) of electrolyte and conductive carbon in the battery cell. These are the commercially used salt LiPF 6 , the sulfur- and nitrogen-containing LiTFSI, and the fluorine-free and oxygen-containing compound LiClO 4 . The salts are mixed with ethylene carbonate (EC) at a concentration of 1.5 M, so that linear carbonates like EMC or DMC which have a much higher vapor pressure than EC can be avoided, allowing for precise signal quantification in OEMS. 3 The comparison of the salts will be done on the basis of the CO/CO 2 gas evolution monitored by OEMS at various temperatures between 25 and 60°C. We employ a fully 13 C-labeled carbon electrode to deconvolute the CO/CO 2 evolution from electrolyte oxidation ( 12 C) from that of the conductive carbon oxidation ( 13 C). We quantify our OEMS results using a calibration gas, and give both, quantitative and mechanistic insights into the effect of the conducting salt on gas evolution in high-voltage lithium-ion batteries. By quantification of both CO/CO 2 isotopes we determine the molar oxidation rate and the weight loss of electrolyte and carbon due to anodic oxidation. In summary, this study elucidates to which extent the lithium salt can influence gas generation at high voltage and might allow to deduce design principles for the synthesis of novel electrolyte salts. Figure 1 shows in the upper panel the current-potential profiles of 13 C-carbon//lithium half-cells with the three different conducting salts at 1.5 M in EC upon a linear potential sweep from OCV to 5.5 V vs. Li/Li + . The corresponding evolution of both isotopes of CO 2 (solid lines) and CO (dotted lines) for the electrolyte oxidation and the 13 C-carbon oxidation are shown in the middle panel and the lower panel, respectively. References O. Gröger et al., J. Electrochem. Soc. , 162 , A2605 (2015). N. Tsiouvaras et al., J. Electrochem. Soc. , 160 , A471 (2013). M. Metzger et al., J. Electrochem. Soc. , 162 , A1123 (2015). M. Metzger et al., J. Electrochem. Soc. , 162 , A1227 (2015). M. Metzger et al., J. Electrochem. Soc. , 163 , A798 (2016). Acknowledgement The authors gratefully acknowledge BASF SE for financial support of this research through the framework of its Scientific Network on Electrochemistry and Batteries. Figure 1. Carbon and electrolyte oxidation upon linear potential sweep from OCV to 5.5 V vs. Li/Li + at 0.1 mV/s with a 13 C-carbon working-electrode and a metallic lithium counter-electrode for an EC-based electrolyte with 1.5 M LiClO 4 , LiPF 6 , or LiTFSI, respectively. (a) Current-potential profile, (b) 12 CO/ 12 CO 2 from electrolyte oxidation, (c) 13 CO/ 13 CO 2 from carbon oxidation. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼一斩完成签到,获得积分10
1秒前
琉璃琨琨完成签到 ,获得积分10
2秒前
愫问完成签到,获得积分10
3秒前
3秒前
4秒前
嘿嘿发布了新的文献求助10
4秒前
ding应助wzx采纳,获得10
4秒前
5秒前
wtt关闭了wtt文献求助
5秒前
曲淳发布了新的文献求助30
5秒前
时尚捕发布了新的文献求助10
6秒前
qwer12完成签到,获得积分10
6秒前
小羊哥完成签到,获得积分20
7秒前
JamesPei应助王胜寒采纳,获得10
8秒前
幸福台灯发布了新的文献求助10
9秒前
悦悦发布了新的文献求助10
9秒前
ally发布了新的文献求助10
9秒前
llll发布了新的文献求助10
10秒前
10秒前
潘宋发布了新的文献求助20
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
慕青应助suibiao采纳,获得10
12秒前
12秒前
王不见王完成签到,获得积分10
13秒前
6666完成签到 ,获得积分10
14秒前
14秒前
无所归兮发布了新的文献求助10
14秒前
明芷蝶完成签到,获得积分10
15秒前
在水一方应助w1采纳,获得10
15秒前
忐忑的不弱完成签到,获得积分20
15秒前
宇宙法发布了新的文献求助10
16秒前
小马甲应助对映体采纳,获得10
16秒前
16秒前
羽球吴关注了科研通微信公众号
16秒前
ally完成签到,获得积分10
16秒前
Akim应助重要的问雁采纳,获得20
17秒前
xiaoyao发布了新的文献求助10
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487183
求助须知:如何正确求助?哪些是违规求助? 4586669
关于积分的说明 14410474
捐赠科研通 4517522
什么是DOI,文献DOI怎么找? 2475310
邀请新用户注册赠送积分活动 1461092
关于科研通互助平台的介绍 1434019