Learning and Information in Stochastic Networks and Queues

强化学习 计算机科学 排队论 后悔 登录 排队 人工智能 感知器 运筹学 机器学习 人工神经网络 数学 计算机安全 计算机网络
作者
Neil Walton,Kuang Xu
标识
DOI:10.1287/educ.2021.0235
摘要

AboutSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked InEmail Go to Section HomeINFORMS TutORials in Operations ResearchEmerging Optimization Methods and Modeling Techniques with Applications Learning and Information in Stochastic Networks and QueuesNeil Walton, Kuang XuNeil Walton, Kuang XuPublished Online:18 Oct 2021https://doi.org/10.1287/educ.2021.0235AbstractWe review the role of information and learning in the stability and optimization of queueing systems. In recent years, techniques from supervised learning, online learning, and reinforcement learning have been applied to queueing systems supported by the increasing role of information in decision making. We present observations and new results that help rationalize the application of these areas to queueing systems. We prove that the MaxWeight policy is an application of Blackwell’s approachability theorem. This connects queueing theoretic results with adversarial learning. We then discuss the requirements of statistical learning for service parameter estimation. As an example, we show how queue size regret can be bounded when applying a perceptron algorithm to classify service. Next, we discuss the role of state information in improved decision making. Here, we contrast the roles of epistemic information (information on uncertain parameters) and aleatoric information (information on an uncertain state). Finally, we review recent advances in the theory of reinforcement learning and queueing, as well as provide discussion of current research challenges. Video of this TutORial from the 2021 INFORMS Annual Meeting, held virtually October 24, 2021, is available at https://youtu.be/9Hep40ZuKpk. Your Access Options Login Options INFORMS Member Login Nonmember Login Purchase Options Save for later Item saved, go to cart Tutorials in OR, TutorialsNew $20.00 Add to cart Tutorials in OR, TutorialsNew Checkout Other Options Token Access Insert token number Claim access using a token Restore guest access Applies for purchases made as a guest Previous Back to Top Next FiguresReferencesRelatedInformation Emerging Optimization Methods and Modeling Techniques with ApplicationsOctober 2021 Article Information Metrics Information Published Online:October 18, 2021 Copyright © 2021, INFORMSCite asNeil Walton, Kuang Xu (2021) Learning and Information in Stochastic Networks and Queues. INFORMS TutORials in Operations Research null(null):161-198. https://doi.org/10.1287/educ.2021.0235 Keywordsqueuequeueing networklearninginformationreinforcement learningBlackwell approachabilityonline convex optimizationPDF download

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄完成签到,获得积分0
刚刚
瓶子完成签到,获得积分10
1秒前
99完成签到,获得积分10
1秒前
1秒前
果果完成签到,获得积分10
1秒前
1秒前
lotus完成签到,获得积分10
1秒前
搜集达人应助牛哥采纳,获得10
2秒前
jianglili完成签到,获得积分10
2秒前
七七发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
无糖零脂发布了新的文献求助10
6秒前
Superman完成签到 ,获得积分10
6秒前
种烟草的狗大户完成签到,获得积分10
6秒前
lotus发布了新的文献求助10
7秒前
an完成签到,获得积分10
7秒前
Megumi发布了新的文献求助10
8秒前
小樱没有魔法阵完成签到,获得积分10
8秒前
9秒前
汉堡包应助cccc采纳,获得10
10秒前
10秒前
郭翔完成签到,获得积分10
11秒前
慌慌完成签到,获得积分10
11秒前
123关闭了123文献求助
12秒前
12秒前
肉卷子完成签到,获得积分10
12秒前
12秒前
huangsi完成签到,获得积分10
12秒前
归尘发布了新的文献求助10
12秒前
13秒前
zhi芝完成签到,获得积分10
13秒前
13秒前
乐乐乐乐乐乐应助Wy采纳,获得10
13秒前
Dskelf完成签到,获得积分10
13秒前
16秒前
赘婿应助无糖零脂采纳,获得10
17秒前
毒蛇如我发布了新的文献求助10
17秒前
听安完成签到,获得积分10
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692