A graph placement methodology for fast chip design

计算机科学 炸薯条 图形 理论计算机科学 电信
作者
Azalia Mirhoseini,Anna Goldie,Mustafa Ege Yazgan,Joe Wenjie Jiang,Ebrahim M. Songhori,Shen Wang,Young‐Joon Lee,Eric N. Johnson,Omkar Pathak,Azade Nova,Jiwoo Pak,Andy Tong,Kavya Srinivasa,William Hang,E. Tuncer,Quoc V. Le,James Laudon,Richard C. Ho,R. H. S. Carpenter,Jeff Dean
出处
期刊:Nature [Nature Portfolio]
卷期号:594 (7862): 207-212 被引量:489
标识
DOI:10.1038/s41586-021-03544-w
摘要

Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research1, chip floorplanning has defied automation, requiring months of intense effort by physical design engineers to produce manufacturable layouts. Here we present a deep reinforcement learning approach to chip floorplanning. In under six hours, our method automatically generates chip floorplans that are superior or comparable to those produced by humans in all key metrics, including power consumption, performance and chip area. To achieve this, we pose chip floorplanning as a reinforcement learning problem, and develop an edge-based graph convolutional neural network architecture capable of learning rich and transferable representations of the chip. As a result, our method utilizes past experience to become better and faster at solving new instances of the problem, allowing chip design to be performed by artificial agents with more experience than any human designer. Our method was used to design the next generation of Google’s artificial intelligence (AI) accelerators, and has the potential to save thousands of hours of human effort for each new generation. Finally, we believe that more powerful AI-designed hardware will fuel advances in AI, creating a symbiotic relationship between the two fields. Machine learning tools are used to greatly accelerate chip layout design, by posing chip floorplanning as a reinforcement learning problem and using neural networks to generate high-performance chip layouts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
3秒前
爆米花应助ccm采纳,获得10
4秒前
火的信仰发布了新的文献求助80
5秒前
5秒前
小二郎应助研究牲采纳,获得10
5秒前
晓晓完成签到,获得积分10
5秒前
5秒前
5秒前
苏大大完成签到,获得积分10
5秒前
何YI完成签到,获得积分10
6秒前
6秒前
lsh完成签到,获得积分10
6秒前
7秒前
义气凡霜发布了新的文献求助10
7秒前
肆樂柒完成签到,获得积分10
7秒前
hu完成签到,获得积分10
8秒前
8秒前
10秒前
葛蓉发布了新的文献求助30
10秒前
嘻嘻哈哈完成签到 ,获得积分10
10秒前
孙行行发布了新的文献求助10
10秒前
梦里格斗家完成签到,获得积分10
10秒前
11秒前
yinying发布了新的文献求助10
11秒前
vlots应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
11秒前
Akim应助万事胜意采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
vlots应助科研通管家采纳,获得30
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
老鱼吹浪完成签到,获得积分10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5165143
求助须知:如何正确求助?哪些是违规求助? 4357538
关于积分的说明 13567398
捐赠科研通 4203399
什么是DOI,文献DOI怎么找? 2305198
邀请新用户注册赠送积分活动 1305131
关于科研通互助平台的介绍 1251539