Harnessing orthogonal recombinases to decipher cell fate with enhanced precision

生物 重组酶 计算生物学 细胞生物学 遗传学 基因 破译 细胞命运测定 重组 转录因子
作者
Wendong Weng,Xiuxiu Liu,Kathy O. Lui,Bin Zhou
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:32 (4): 324-337 被引量:21
标识
DOI:10.1016/j.tcb.2021.09.007
摘要

HighlightsOrthogonal recombinase systems are superior to conventional single-recombinase for studying in vivo cell fate, as they employ multiple markers to increase the resolution and precision of cell fate mapping results.Orthogonal recombinase systems enable genetic labeling of the intersect or subtractive parts of multiple cell populations, which helps clarify some controversial issues in cell origins and fate plasticity.Transitional transcriptional activation could be genetically recorded by orthogonal recombinase systems that could continuously capture some brief yet biologically important cellular events or states.Orthogonal recombinase systems have broad applications in cell lineage tracing and gene manipulation in fields of developmental biology, neuroscience, cardiovascular biology, oncology, and regenerative medicine.AbstractPrecisely deciphering the cellular plasticity in vivo is essential in understanding many key biological processes. Site-specific recombinases are genetic tools used for in vivo lineage tracing and gene manipulation. Conventional Cre-loxP, Dre-rox, and Flp-frt technologies form the orthogonal recombination systems that can also be used in combination to increase the precision. As such, more than one marker gene can be targeted for lineage tracing, studying cellular heterogeneity, recording cellular activities, or even genome editing. Their combinatory use has recently resolved some controversies in defining cellular fate plasticity. Focusing on cell fate studies, we introduce the design principles of orthogonal recombinases-based strategies, describe some working examples in resolving cell fate-related controversies, and discuss some of their technical strengths and limits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JOKER完成签到 ,获得积分10
7秒前
龍Ryu完成签到,获得积分10
9秒前
11秒前
shirley完成签到,获得积分10
12秒前
木光完成签到,获得积分10
12秒前
雨霧雲完成签到,获得积分10
15秒前
guantlv完成签到,获得积分10
15秒前
淡然白安发布了新的文献求助30
16秒前
18秒前
科研通AI5应助ada采纳,获得10
18秒前
zbclzf完成签到,获得积分10
21秒前
星海种花完成签到 ,获得积分10
22秒前
cdercder应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
23秒前
摩诃萨完成签到,获得积分10
25秒前
佳期如梦完成签到 ,获得积分10
28秒前
乐观健柏完成签到,获得积分10
30秒前
睡觉觉了完成签到,获得积分20
32秒前
流口水完成签到,获得积分10
33秒前
顺利白安完成签到,获得积分10
34秒前
朱婷完成签到 ,获得积分10
37秒前
心心完成签到,获得积分10
39秒前
光之霓裳完成签到 ,获得积分10
39秒前
42秒前
可爱的函函应助maclogos采纳,获得10
44秒前
健忘的雨安完成签到,获得积分10
44秒前
受伤问凝完成签到 ,获得积分10
47秒前
ada发布了新的文献求助10
47秒前
冰魂应助茶茶采纳,获得10
48秒前
50秒前
longer完成签到 ,获得积分10
51秒前
54秒前
whisper完成签到 ,获得积分10
55秒前
和谐的夏岚完成签到 ,获得积分10
55秒前
小小百完成签到 ,获得积分10
56秒前
56秒前
57秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206543
捐赠科研通 3036730
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841