A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter

归一化差异植被指数 遥感 环境科学 时间序列 系列(地层学) 残余物 植被(病理学) 滤波器(信号处理) 噪音(视频) 计算机科学 数学 算法 地理 地质学 统计 气候变化 人工智能 图像(数学) 病理 古生物学 海洋学 医学 计算机视觉
作者
Yang Chen,Ruyin Cao,Jin Chen,Licong Liu,Bunkei Matsushita
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:180: 174-190 被引量:229
标识
DOI:10.1016/j.isprsjprs.2021.08.015
摘要

Normalized Difference Vegetation Index (NDVI) data derived from Landsat satellites are important resources for vegetation monitoring. However, Landsat NDVI time-series data are usually temporally discontinuous owing to the nominal 16-day revisit cycle, frequent cloud contamination, and other factors. Although several methods have been proposed to reconstruct continuous Landsat NDVI time-series data, some challenges remain in the existing reconstruction methods. In this study, we developed a simple but effective G ap F illing and S avitzky– G olay filtering method (referred to as “GF-SG”) to reconstruct high-quality Landsat NDVI time-series data. This new method first generates a synthesized NDVI time series by filling missing values in the original Landsat NDVI time-series data by integrating the MODIS NDVI time-series data and cloud-free Landsat observations. Then, a weighted Savitzky-Golay filter was designed to remove the residual noise in the synthesized time series. Compared with three previous typical methods (IFSDAF, STAIR, and Fill-and-Fit) in two challenging areas (the Coleambally irrigated area in Australia and the Taian cultivated area in China) with heterogeneous parcels and complex NDVI profiles, we found that GF-SG performed the best with three obvious improvements. First, GF-SG improved the reconstruction of long-term continuous missing values in Landsat NDVI time series, whereas the other methods were less reliable for reconstructing these long data gaps. Second, the performance of GF-SG was less affected by the residual noise caused by cloud detection errors in the Landsat image, which is due to the incorporation of the weighted SG filter in the new method. Third, GF-SG was simple and could be implemented on the computing platform Google Earth Engine (GEE), which is particularly important for the practical application of the new method at a large spatial scale. The GEE code is freely available at https://code.earthengine.google.com/3a883c9e84ad119045bcb88e4de77b47?noload=true . We expect that this practical approach can further popularize the use of Landsat NDVI time-series data in ecological, geographical, and environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王千鹤发布了新的文献求助10
1秒前
DocM完成签到 ,获得积分10
2秒前
2秒前
3秒前
auggy发布了新的文献求助10
4秒前
领导范儿应助小张不嘻嘻采纳,获得10
5秒前
辛涩发布了新的文献求助10
5秒前
wink完成签到 ,获得积分10
6秒前
洁净的小熊猫完成签到,获得积分10
7秒前
9秒前
gbzz完成签到,获得积分10
9秒前
orixero应助王千鹤采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Azhar完成签到,获得积分10
10秒前
乐乐应助依紫采纳,获得10
10秒前
文献来发布了新的文献求助10
11秒前
11秒前
11秒前
辛涩完成签到,获得积分10
11秒前
11秒前
light111发布了新的文献求助20
13秒前
张宋完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
通~发布了新的文献求助10
15秒前
15秒前
15秒前
李海平完成签到 ,获得积分10
15秒前
kiki完成签到 ,获得积分10
15秒前
17秒前
17秒前
隐形曼青应助威武的傲薇采纳,获得10
17秒前
温柔依云完成签到,获得积分10
18秒前
Ava应助nnn采纳,获得10
18秒前
18秒前
orixero应助不凌采纳,获得10
19秒前
天天快乐应助杨文静采纳,获得10
19秒前
Niki发布了新的文献求助10
20秒前
21秒前
挺好发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743112
求助须知:如何正确求助?哪些是违规求助? 5412747
关于积分的说明 15346869
捐赠科研通 4884076
什么是DOI,文献DOI怎么找? 2625553
邀请新用户注册赠送积分活动 1574422
关于科研通互助平台的介绍 1531297