亚颗粒带
齿状回
神经炎症
神经发生
海马结构
小胶质细胞
神经干细胞
医学
海马体
神经科学
祖细胞
胶质发生
纽恩
干细胞
病理
生物
细胞生物学
室下区
免疫学
炎症
免疫组织化学
作者
Zoé Schmal,Ben Hammer,Andreas Müller,Claudia E. Rübe
标识
DOI:10.1016/j.ijrobp.2021.07.007
摘要
Despite major technical advances in hippocampus-sparing radiation therapy, radiation-induced injury to the neural stem cell compartment may affect neurocognitive functions. In the brain, glial cells modulate neuronal functions and are major mediators of neuroinflammation. In a preclinical mouse model with fractionated low-dose radiation (LDR), the complex response to radiation-induced injury was analyzed in the hippocampal stem cell compartment over a period of 6 months.Adult and juvenile C57BL/6NCrl mice were exposed to low doses of ionizing radiation (IR; 20 fractions of 0.1 Gy, for up to 4 weeks) daily. At 72 hours and 1, 3, and 6 months after fractionated LDR, magnetic resonance imaging (9.4 T) was conducted to detect structural and functional abnormalities in the hippocampal region. Using immunofluorescence and histologic studies, neuroglia cells (astrocytes, microglia, oligodendrocytes) were quantified and neuroinflammatory responses were characterized in the hippocampal dentate gyrus. Using in vivo bromodeoxyuridine labeling, the cell fate of newly generated progenitor cells was tracked in the subgranular zone of the dentate gyrus during fractionated LDR.Low doses of IR induced long-lasting inflammatory responses with local increases of activated microglia and reactive astrocytes, which were most pronounced in the juvenile hippocampus within the first months after LDR. Glial activation with the consequent release of proinflammatory mediators increased local blood flow and vascular permeability in the hippocampal region. Cell fate mapping of progenitors located in the subgranular zone revealed a transient shift from neurogenesis to gliogenesis.Glial cell activation and transient neuroinflammation may reflect radiation-induced neuronal damage in the hippocampal stem cell niche. The increased proliferative capacity of the developing brain may explain the enhanced hippocampal radiosensitivity, with stronger inflammatory reactions in the juvenile hippocampus. Thus, limiting the radiation dose to the hippocampal region is an important issue of clinical radiation therapy at all ages to preserve neurocognitive functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI