Genome structural variation in human evolution

生物 结构变异 基因组 拷贝数变化 进化生物学 遗传学 适应(眼睛) 人类进化 个人基因组学 人类遗传变异 DNA测序 基因 计算生物学 人类基因组 神经科学
作者
Edward J. Hollox,Luciana W. Zuccherato,Serena Tucci
出处
期刊:Trends in Genetics [Elsevier BV]
卷期号:38 (1): 45-58 被引量:52
标识
DOI:10.1016/j.tig.2021.06.015
摘要

There has been an explosion in knowledge of structural variants through analysis of short-read sequencing in large population cohorts. Long-read sequencing technology is dramatically improving our ability to detect and genotype structural variants, particularly in complex repeat-rich regions. Structural variants are important in neurological changes involved in human evolution. Structural variants have mediated population-specific human adaptations to diet and infectious disease exposure. Introgression from archaic hominins has contributed structural variants to modern human populations. Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV. Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV. acquisition of variants from archaic hominins that have enabled adaptation in new environments. a variant that is correlated with levels of mRNA of a particular gene in a particular tissue or cell type. change in allele frequency from one generation to the next because of random variation in offspring number between different individuals in a finite population. a protein made of two different subunits. a protein made of two identical subunits. two identical alleles that have arisen from a single mutational event. Segments of identity by descent are genomic regions over which a pair of individuals share a haplotype due to inheritance from a recent common ancestor. two identical alleles that have arisen in different mutational events. using the information from the known haplotypes present in a population to infer a genotype at a locus. acquisition of variants from archaic humans. the nonrandom association of alleles at two or more loci. a copy number variant with more than one allele in the population; usually, each allele consists of a variable number of tandem repeats. evolution by retaining juvenile features in the adult, often by slowing or delaying particular developmental processes. a mutational process whereby unequal crossing over during meiosis between similar DNA sequences generates deletions or duplications. Also known as ‘ectopic recombination.’ determining the haplotype of multiple alleles from diploid genotypes. sections of DNA that map to at least two different genomic locations. Originally coined to distinguish shorter interspersed duplications from whole-genome duplications. specific single nucleotides in the genome that differ between members of the same species; for example, in some human genomes, it could be an A, in others a C. essentially synonymous with SNVs but sometimes used to imply a common SNV in a population: An SNP is an SNV that occurs at >1% frequency in a specific population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨完成签到,获得积分10
1秒前
齐嘉懿发布了新的文献求助10
1秒前
自由自在发布了新的文献求助10
2秒前
要开心完成签到 ,获得积分10
2秒前
自信的秋灵完成签到,获得积分20
3秒前
嗯哼完成签到 ,获得积分10
4秒前
4秒前
4秒前
YK发布了新的文献求助10
5秒前
bc应助要减肥含灵采纳,获得20
6秒前
良仑完成签到,获得积分10
9秒前
潘多拉发布了新的文献求助10
9秒前
10秒前
10秒前
AJS发布了新的文献求助10
10秒前
Chivalry0219发布了新的文献求助10
11秒前
成就大山完成签到,获得积分10
13秒前
15秒前
wen发布了新的文献求助10
15秒前
¥#¥-11完成签到,获得积分10
15秒前
自由的尔蓉完成签到 ,获得积分10
16秒前
Danny完成签到,获得积分10
16秒前
桐桐应助li采纳,获得10
17秒前
健壮的紫菱完成签到,获得积分10
18秒前
96发布了新的文献求助100
18秒前
Roach完成签到,获得积分10
18秒前
22秒前
22秒前
深情安青应助mumu采纳,获得10
24秒前
隐形曼青应助linlin采纳,获得10
24秒前
27秒前
tw0125发布了新的文献求助10
27秒前
自由自在完成签到,获得积分10
28秒前
脑洞疼应助晚云烟月采纳,获得10
29秒前
31秒前
31秒前
Orange应助qq采纳,获得10
32秒前
32秒前
AJS完成签到,获得积分10
33秒前
情怀应助wp采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056