Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study

医学 慢性阻塞性肺病 可穿戴计算机 可穿戴技术 队列 急诊医学 机器学习 人工智能 物理疗法 内科学 计算机科学 嵌入式系统
作者
Chia‐Tung Wu,Guo-Hung Li,Chun‐Ta Huang,Yu‐Chieh Cheng,Chi‐Hsien Chen,Jung‐Yien Chien,Ping‐Hung Kuo,Lu-Cheng Kuo,Feipei Lai
出处
期刊:Jmir mhealth and uhealth [JMIR Publications]
卷期号:9 (5): e22591-e22591 被引量:78
标识
DOI:10.2196/22591
摘要

Background The World Health Organization has projected that by 2030, chronic obstructive pulmonary disease (COPD) will be the third-leading cause of mortality and the seventh-leading cause of morbidity worldwide. Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with an accelerated decline in lung function, diminished quality of life, and higher mortality. Accurate early detection of acute exacerbations will enable early management and reduce mortality. Objective The aim of this study was to develop a prediction system using lifestyle data, environmental factors, and patient symptoms for the early detection of AECOPD in the upcoming 7 days. Methods This prospective study was performed at National Taiwan University Hospital. Patients with COPD that did not have a pacemaker and were not pregnant were invited for enrollment. Data on lifestyle, temperature, humidity, and fine particulate matter were collected using wearable devices (Fitbit Versa), a home air quality–sensing device (EDIMAX Airbox), and a smartphone app. AECOPD episodes were evaluated via standardized questionnaires. With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. Results The continuous real-time monitoring of lifestyle and indoor environment factors was implemented by integrating home air quality–sensing devices, a smartphone app, and wearable devices. All data from 67 COPD patients were collected prospectively during a mean 4-month follow-up period, resulting in the detection of 25 AECOPD episodes. For 7-day AECOPD prediction, the proposed AECOPD predictive model achieved an accuracy of 92.1%, sensitivity of 94%, and specificity of 90.4%. Receiver operating characteristic curve analysis showed that the area under the curve of the model in predicting AECOPD was greater than 0.9. The most important variables in the model were daily steps walked, stairs climbed, and daily distance moved. Conclusions Using wearable devices, home air quality–sensing devices, a smartphone app, and supervised prediction algorithms, we achieved excellent power to predict whether a patient would experience AECOPD within the upcoming 7 days. The AECOPD prediction system provided an effective way to collect lifestyle and environmental data, and yielded reliable predictions of future AECOPD events. Compared with previous studies, we have comprehensively improved the performance of the AECOPD prediction model by adding objective lifestyle and environmental data. This model could yield more accurate prediction results for COPD patients than using only questionnaire data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiang完成签到,获得积分10
刚刚
小谢完成签到,获得积分10
1秒前
1秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI5应助vivre223采纳,获得10
2秒前
ding应助科研通管家采纳,获得30
2秒前
xzy998应助科研通管家采纳,获得10
2秒前
北风应助科研通管家采纳,获得10
2秒前
坚强白凝完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
7秒前
学术zha完成签到,获得积分10
7秒前
8秒前
李健的小迷弟应助Awikl采纳,获得10
8秒前
科研通AI5应助波波采纳,获得20
9秒前
9秒前
调皮黑猫发布了新的文献求助30
9秒前
cacaldon完成签到,获得积分10
10秒前
Jeffreyzhong完成签到,获得积分10
10秒前
11秒前
二般人完成签到 ,获得积分10
11秒前
lihaodajia完成签到,获得积分10
11秒前
大气中心发布了新的文献求助10
12秒前
12秒前
沙非娅发布了新的文献求助10
13秒前
14秒前
明亮飞双发布了新的文献求助10
14秒前
徐zhipei完成签到 ,获得积分10
15秒前
16秒前
17秒前
iNk应助云澈采纳,获得20
17秒前
润泉发布了新的文献求助10
18秒前
CodeCraft应助杨帆的科研采纳,获得10
19秒前
19秒前
liuxinran完成签到,获得积分10
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208