Artificial Intelligence and Obstetric Ultrasound

产科超声 超声波 产科 医学 医学物理学 计算机科学 怀孕 放射科 生物 胎儿 遗传学
作者
Ryu Matsuoka
出处
期刊:Donald School Journal of Ultrasound in Obstetrics and Gynecology [Jaypee Brothers Medical Publishing]
卷期号:15 (3): 218-222 被引量:4
标识
DOI:10.5005/jp-journals-10009-1702
摘要

Artificial intelligence (AI) technology is currently in its third era.Current AI technology is driven by machine learning (ML), particularly deep learning (DL).Deep learning is a computer technology that allows a computational model with multiple processing layers to learn the features of data.Convolutional neural networks have led to breakthroughs in the processing of images, videos, and audio.In medical imaging, computeraided diagnosis algorithms for diabetic retinopathy, diabetic macular edema, tuberculosis, skin lesions, and colonoscopy classifiers are highly accurate and comparable to clinician performance.Although the application of AI technology in the field of ultrasound (US) has lagged behind other modalities such as radiography, computed tomography (CT), and magnetic resonance imaging (MRI), it has been rapidly applied in the field of obstetrics and gynecology in recent years.The results of AI processing of US images to determine the malignancy of ovarian tumors are comparable to the International Ovarian Tumor Analysis results, and it is now possible to identify each part of the body and calculate the estimated weight from fetal US movies.However, the application of AI to the central nervous system and especially to the fetal heart, which is the main part of fetal US morphological examination, is just beginning to progress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NCU-Xzzzz发布了新的文献求助10
刚刚
赘婿应助孙不缺采纳,获得10
刚刚
佳妮发布了新的文献求助20
刚刚
1秒前
1秒前
念与惜完成签到 ,获得积分10
1秒前
小马驹发布了新的文献求助10
1秒前
2秒前
zzzzzer0发布了新的文献求助20
2秒前
2秒前
Yolo发布了新的文献求助10
2秒前
2秒前
3秒前
FashionBoy应助sss采纳,获得10
3秒前
yuan发布了新的文献求助10
3秒前
yangzhiganlu完成签到,获得积分10
3秒前
3秒前
在水一方应助AlexLee采纳,获得10
4秒前
4秒前
越啊完成签到,获得积分10
4秒前
6秒前
zq发布了新的文献求助10
6秒前
qq发布了新的文献求助10
6秒前
英姑应助Sky我的小清新采纳,获得10
7秒前
7秒前
赘婿应助lanlan采纳,获得10
7秒前
8秒前
jin发布了新的文献求助10
8秒前
心空完成签到,获得积分10
8秒前
郭少敏发布了新的文献求助10
9秒前
勤恳的磬完成签到,获得积分10
9秒前
抽象电台头完成签到,获得积分10
9秒前
starry001发布了新的文献求助10
10秒前
夏爽2023完成签到,获得积分10
10秒前
10秒前
11秒前
共享精神应助伊梦采纳,获得10
11秒前
珍珠奶茶发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221