亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll‐a content: A case study in the Tri An Reservoir, Vietnam

原位 机器学习 算法 人工智能 遥感 环境科学 叶绿素 计算机科学 地质学 植物 气象学 生物 物理
作者
Nguyen Hao Quang,Nam Thang Ha,Nguyễn Ngọc Lâm,Thanh‐Luu Pham
出处
期刊:Water Environment Research [Wiley]
卷期号:93 (12): 2941-2957 被引量:19
标识
DOI:10.1002/wer.1643
摘要

Chlorophyll-a (Chl-a) is one of the most important indicators of the trophic status of inland waters, and its continued monitoring is essential. Recently, the operated Sentinel-2 MSI satellite offers high spatial resolution images for remote water quality monitoring. In this study, we tested the performance of the three well-known machine learning (ML) (random forest [RF], support vector machine [SVM], and Gaussian process [GP]) and the two novel ML (extreme gradient boost (XGB) and CatBoost [CB]) models for estimation a wide range of Chl-a concentration (10.1-798.7 μg/L) using the Sentinel-2 MSI data and in situ water quality measurement in the Tri An Reservoir (TAR), Vietnam. GP indicated the most reliable model for predicting Chl-a from water quality parameters (R2 = 0.85, root-mean-square error [RMSE] = 56.65 μg/L, Akaike's information criterion [AIC] = 575.10, and Bayesian information criterion [BIC] = 595.24). Regarding input model as water surface reflectance, CB was the superior model for Chl-a retrieval (R2 = 0.84, RMSE = 46.28 μg/L, AIC = 229.18, and BIC = 238.50). Our results indicated that GP and CB are the two best models for the prediction of Chl-a in TAR. Overall, the Sentinel-2 MSI coupled with ML algorithms is a reliable, inexpensive, and accurate instrument for monitoring Chl-a in inland waters. PRACTITIONER POINTS: Machine learning algorithms were used for both remote sensing data and in situ water quality measurements. The performance of five well-known machine learning models was tested Gaussian process was the most reliable model for predicting Chl-a from water quality parameters CatBoost was the best model for Chl-a retrieval from water surface reflectance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助11采纳,获得10
7秒前
17秒前
11发布了新的文献求助10
20秒前
bkagyin应助科研通管家采纳,获得10
32秒前
老石完成签到 ,获得积分10
38秒前
49秒前
称心如意完成签到 ,获得积分10
51秒前
55秒前
1分钟前
1分钟前
LYL发布了新的文献求助10
1分钟前
桐桐应助11采纳,获得10
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
11发布了新的文献求助10
1分钟前
Denmark完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Roentgenstrahlen完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
rerorero18发布了新的文献求助10
3分钟前
zyw完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
长发飘飘发布了新的文献求助10
4分钟前
Akim应助长发飘飘采纳,获得10
4分钟前
星辰大海应助勇往直前采纳,获得10
5分钟前
5分钟前
勇往直前完成签到,获得积分10
5分钟前
勇往直前发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263158
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511