New Insight into Microstructure Engineering of Ni‐Rich Layered Oxide Cathode for High Performance Lithium Ion Batteries

材料科学 微观结构 锂(药物) 离子 阴极 兴奋剂 粒子(生态学) 析氧 氧化物 纳米技术 化学工程 电化学 电池(电) 复合材料 冶金 电极 光电子学 化学 物理化学 功率(物理) 医学 有机化学 海洋学 量子力学 内分泌学 工程类 地质学 物理
作者
C. Jung,Do‐Hoon Kim,Donggun Eum,Kyeong‐Ho Kim,Jonghyun Choi,Jongwon Lee,Hyung‐Ho Kim,Kisuk Kang,Seong‐Hyeon Hong
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (18) 被引量:157
标识
DOI:10.1002/adfm.202010095
摘要

Abstract Ni‐rich layered LiNi x Co y Mn 1− x − y O 2 (LNCM) with Ni content over >90% is considered as a promising lithium ion battery (LIB) cathode, attributed by its low cost and high practical capacity. However, Ni‐rich LNCM inevitably suffers rapid capacity fading at a high state of charge due to the mechanochemical breakdown; in particular, the microcrack formation has been regarded as one of the main culprits for Ni‐rich layered cathode failure. To address these issues, Ni‐rich layered cathodes with a textured microstructure are developed by phosphorous and boron doping. Attributed by the textured morphology, both phosphorous‐ and boron‐doped cathodes suppress microcrack formation and show enhanced cycle stability compared to the undoped cathode. However, there exists a meaningful capacity retention difference between the doped cathodes. By adapting the various analysis techniques, it is shown that the boron‐doped Ni‐rich layered cathode displays better cycle stability not only by its ability to suppress microcracks during cycling but also by its primary particle morphology that is reluctant to oxygen evolution. The present work reveals that not only restraint of particle cracks but also suppression of oxygen release by developing the oxygen stable facets is important for further improvements in state‐of‐the‐art Li ion battery Ni‐rich layered cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的飞松完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
罗C发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
风云完成签到,获得积分20
6秒前
6秒前
7秒前
nuoran发布了新的文献求助10
7秒前
8秒前
8秒前
碧蓝煎蛋关注了科研通微信公众号
8秒前
英姑应助Aile。采纳,获得10
8秒前
8秒前
李爱国应助小刘采纳,获得10
8秒前
橘哩咕噜发布了新的文献求助10
9秒前
科研通AI2S应助SSQY采纳,获得10
9秒前
汉堡包应助红红火火h采纳,获得10
10秒前
隐形冰蝶发布了新的文献求助10
10秒前
lulu完成签到,获得积分10
10秒前
10秒前
xiaozhao完成签到,获得积分10
11秒前
11秒前
张萌发布了新的文献求助10
11秒前
开心安莲发布了新的文献求助200
11秒前
丘比特应助butterfly采纳,获得10
11秒前
11秒前
斯文败类应助沫沫采纳,获得10
12秒前
黄柠檬完成签到,获得积分10
13秒前
13秒前
er发布了新的文献求助10
13秒前
13秒前
13秒前
哈理老萝卜发布了新的文献求助100
14秒前
14秒前
优雅柏柳发布了新的文献求助10
15秒前
净土完成签到,获得积分20
15秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250