TRPV1型
花生四烯酸
神经源性炎症
化学
炎症
环氧酶
内生
羟基二十碳四烯酸
瞬时受体电位通道
P物质
受体
生物化学
内分泌学
药理学
生物
神经肽
免疫学
酶
作者
Alexander J. P. Hamers,C Primus,Charlotte Whitear,Nitin Ajit Kumar,Michael Masucci,Shanik A. Montalvo Moreira,Krishnaraj S. Rathod,Jianmin Chen,Kristen J. Bubb,Romain A. Colas,Rayomand S. Khambata,Jesmond Dalli,Amrita Ahluwalia
摘要
Background and Purpose Transient receptor potential cation channel subfamily V member 1 (TRPV1) is localized to sensory C‐fibres and its opening leads to membrane depolarization, resulting in neuropeptide release and neurogenic inflammation. However, the identity of the endogenous activator of TRPV1 in this setting is unknown. The arachidonic acid metabolites 12‐hydroperoxyeicosatetraenoyl acid (12‐HpETE) and 20‐hydroxyeicosatetraenoic acid (20‐HETE) have emerged as potential endogenous activators of TRPV1. However, whether these lipids underlie TRPV1‐mediated neurogenic inflammation remains unknown. Experimental Approach We analysed human cantharidin‐induced blister samples and inflammatory responses in TRPV1 transgenic mice. Key Results In a human cantharidin‐blister model, the potent TRPV1 activators 20‐HETE but not 12‐HETE (stable metabolite of 12‐HpETE) correlated with arachidonic acid levels. Similarly, in mice, levels of 20‐HETE (but not 12‐HETE) and arachidonic acid were strongly positively correlated within the inflammatory milieu. Furthermore, LPS‐induced oedema formation and neutrophil recruitment were substantially and significantly attenuated by pharmacological block or genetic deletion of TRPV1 channels, inhibition of 20‐HETE formation or SP receptor neurokinin 1 (NK 1 ) blockade. LPS treatment also increased cytochrome P450 ω‐hydroxylase gene expression, the enzyme responsible for 20‐HETE production. Conclusion and Implications Taken together, our findings suggest that endogenously generated 20‐HETE activates TRPV1 causing C‐fibre activation and consequent oedema formation. These findings identify a novel pathway that may be useful in the therapeutics of diseases/conditions characterized by a prominent neurogenic inflammation, as in several skin diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI