生物传感器
表面等离子共振
材料科学
纳米技术
吸光度
可见光谱
氮化硼
协同催化
化学
光电子学
作者
Yue Tian,Qingqiang Cui,Linlin Xu,Anxin Jiao,Hui Ma,Chang Wang,Mengya Zhang,Xue-Lin Wang,Shuang Li,Ming Chen
标识
DOI:10.1016/j.bios.2021.113490
摘要
Abstract Photo-electro-chemical (PEC) glucose biosensor has recently attracted extensive attention due to the double advantages of both photocatalysis via photon energy utilization and electrocatalytic oxidation through extra electric field. Compared with previous shorter wavelength (violet-visible) light-induced PEC reaction, the anticipated near infrared (NIR, >~700 nm) excited PEC biosensor with multiple fascinating features should be more suitable for clinical diagnostic biology. Herein, we report an ingenious NIR-PEC biosensor by loading alloyed Au5Pt9 nanoframes on two dimensional (2D) hexagonal boron nitride (h-BN) nanosheets. The obtained h-BN/Au5Pt9 nanoframes exhibit a remarkable higher NIR-PEC activity in comparison with other as-prepared h-BN/AuPt references. The improved PEC performance is attributed to the enhanced synergetic coupling effect between Au5Pt9 nanoalloys and constitutionally stable h-BN that gives rise to a stronger absorbance capacity and pronounced localized surface plasmon resonance (LSPR) in visible-NIR region as well as high free-electron mobility of framework-like Au/Pt. Interestingly, the obtained h-BN/Au5Pt9 nanoframes excited by 808 nm NIR light provide superior PEC accuracy and sensitivity as compared to visible or other NIR light irradiation. Then, the novel 808 nm NIR-PEC biosensor was used for precise glucose monitoring in human tears with a detectable concentration of 0.03~100 μM and a low detection limit of 0.406 nM. Undoubtedly, the proposed h-BN/Au5Pt9 nanoframes as an appealing NIR-PEC glucose biosensor can possess greater potential values for practical glucose monitoring in biomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI