Scan2BIM-NET: Deep Learning Method for Segmentation of Point Clouds for Scan-to-BIM

点云 分割 深度学习 计算机科学 人工智能 过程(计算) 建筑信息建模 人工神经网络 天花板(云) 云计算 计算机视觉 卷积神经网络 模式识别(心理学) 数据挖掘 点(几何) 工程类 结构工程 几何学 操作系统 化学工程 数学 相容性(地球化学)
作者
Yeritza Perez-Perez,Mani Golparvar‐Fard,Khaled El‐Rayes
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:52
标识
DOI:10.1061/(asce)co.1943-7862.0002132
摘要

The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models—a process formally known as scan to building information modeling (Scan-to-BIM)—that represent the current conditions of a construction scene. Although point cloud data provide the scene’s geometric information, its use presents several challenges that make the process of generating a 3D model from point cloud data time-consuming, labor-intensive, and error-prone. In order to address the mentioned challenges, this paper presents a new end-to-end deep learning method, named Scan2BIM-NET, for semantically segmenting the structural, architectural, and mechanical components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, and wall elements using three main networks: two convolutional neural network (CNN) and one recurrent neural network (RNN). The method was trained and tested using 83 rooms from point cloud data representing real-world industrial and commercial buildings. The process returned an average accuracy of 86.13%, and the beam, ceiling, column, floor, pipe, and wall categories obtained an accuracy of 82.47%, 92.60%, 59.31%, 98.71%, 82.79%, and 84.46%, respectively. The experimental results showed that deep learning improves the accuracy of semantic segmentation of architectural, structural, and mechanical components. This new method has the potential of being a tool during the Scan-to-BIM process, especially for semantically segmenting underceiling areas where mechanical components are close to structural elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu驳回了子车茗应助
刚刚
ZXK发布了新的文献求助10
2秒前
笨蛋美女完成签到 ,获得积分10
3秒前
LIO发布了新的文献求助30
5秒前
清风完成签到,获得积分10
5秒前
一一应助嘚嘚采纳,获得10
6秒前
小茗发布了新的文献求助20
8秒前
简单的铃铛完成签到 ,获得积分10
9秒前
空白完成签到,获得积分10
9秒前
脑洞疼应助pp采纳,获得10
10秒前
伟大的娃娃完成签到,获得积分10
11秒前
香蕉子骞完成签到 ,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
wy.he应助科研通管家采纳,获得30
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
小马甲应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
无情的听蓉完成签到,获得积分10
15秒前
15秒前
過客发布了新的文献求助10
17秒前
Ohhruby完成签到,获得积分20
18秒前
pp完成签到,获得积分20
19秒前
19秒前
lvkeyan完成签到,获得积分10
20秒前
大胆胡萝卜完成签到,获得积分10
20秒前
SYLH应助弓纪世采纳,获得10
21秒前
Peng丶Young完成签到,获得积分10
22秒前
pp发布了新的文献求助10
23秒前
科研通AI5应助alaxin采纳,获得10
23秒前
23秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867