A Two-Stage Underwater Enhancement Network Based on Structure Decomposition and Characteristics of Underwater Imaging

水下 计算机科学 卷积神经网络 人工智能 水声通信 失真(音乐) 计算机视觉 图像质量 颜色校正 图像(数学) 地质学 电信 海洋学 放大器 带宽(计算)
作者
Shengcong Wu,Ting Luo,Gangyi Jiang,Mei Yu,Haiyong Xu,Zhongjie Zhu,Yang Song
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1213-1227 被引量:75
标识
DOI:10.1109/joe.2021.3064093
摘要

Due to the scattering and attenuation of light into the water, the underwater image usually appears with color distortion, blurred details, and low contrast. To address these problems, a novel two-stage underwater image convolutional neural network (CNN) based on structure decomposition (UWCNN-SD) for underwater image enhancement is proposed by considering the characteristics of underwater imaging. Specifically, the raw underwater image is decomposed into high-frequency and low-frequency based on theoretical analysis of the underwater imaging. Then, a two-stage underwater enhancement network including a preliminary enhancement network and a refinement network is proposed. In the first stage, the preliminary enhancement network, which contains the high-frequency and the low-frequency enhancement networks, is proposed. The high-frequency part is enhanced directly by a deep learning network, and the low-frequency enhancement network is based on the underwater imaging, which is integrated transmission map and background light into joint component map. In the second stage, the refinement network is designed to further optimize the color of the underwater image by considering complexity of underwater imaging. The experimental results of synthetic and real-world underwater images/videos demonstrate that the proposed UWCNN-SD method can perform color correction and enhancement on different types of underwater images. The ablation study verifies the effectiveness of each component, and application tests further illustrate that the proposed UWCNN-SD method can obtain underwater images with higher visual quality. The trained model is available at: https://github.com/wushengcong/UWCNN-SD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsy完成签到,获得积分20
2秒前
2秒前
海阔天空完成签到,获得积分0
8秒前
tmobiusx完成签到,获得积分10
13秒前
hsrlbc完成签到,获得积分10
15秒前
16秒前
24秒前
MaxCKJ发布了新的文献求助30
24秒前
yk完成签到 ,获得积分10
25秒前
醉清风完成签到 ,获得积分10
27秒前
阳光旭尧完成签到 ,获得积分10
27秒前
666完成签到 ,获得积分10
32秒前
新威宝贝完成签到,获得积分0
34秒前
MaxCKJ完成签到,获得积分10
41秒前
小李完成签到 ,获得积分10
49秒前
49秒前
sunny完成签到 ,获得积分10
50秒前
某某完成签到 ,获得积分10
52秒前
名侦探柯基完成签到 ,获得积分10
54秒前
笨笨忘幽完成签到,获得积分10
54秒前
文刀发布了新的文献求助10
54秒前
饱满烙完成签到 ,获得积分10
56秒前
钟声完成签到,获得积分0
58秒前
开心夏旋完成签到 ,获得积分10
59秒前
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
李大宝完成签到 ,获得积分10
1分钟前
qqqq发布了新的文献求助10
1分钟前
afli完成签到 ,获得积分0
1分钟前
辛勤香岚完成签到,获得积分10
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
wyuanhu完成签到,获得积分10
1分钟前
繁荣的代秋完成签到 ,获得积分10
1分钟前
1分钟前
Serein完成签到,获得积分10
1分钟前
newnew完成签到,获得积分10
1分钟前
忧伤的慕梅完成签到 ,获得积分10
1分钟前
清欢完成签到,获得积分10
2分钟前
hellokitty完成签到,获得积分10
2分钟前
cdercder应助oleskarabach采纳,获得10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244310
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544