红藻氨酸受体
致电离效应
离子型谷氨酸受体
NMDA受体
AMPA受体
甘氨酸受体
神经传递
神经科学
谷氨酸受体
生物
兴奋性突触后电位
甘氨酸
细胞生物学
化学
抑制性突触后电位
受体
生物化学
氨基酸
作者
David Stroebel,Laetitia Mony,Pierre Paoletti
标识
DOI:10.1016/j.neuropharm.2021.108631
摘要
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the vertebrate CNS. Classified as AMPA, kainate, delta and NMDA receptors, iGluRs are central drivers of synaptic plasticity widely considered as a major cellular substrate of learning and memory. Surprisingly however, five out of the eighteen vertebrate iGluR subunits do not bind glutamate but glycine, a neurotransmitter known to mediate inhibitory neurotransmission through its action on pentameric glycine receptors (GlyRs). This is the case of GluN1, GluN3A, GluN3B, GluD1 and GluD2 subunits, all also binding the D amino acid d-serine endogenously present in many brain regions. Glycine and d-serine action and affinities broadly differ between glycinergic iGluR subtypes. On 'conventional' GluN1/GluN2 NMDA receptors, glycine (or d-serine) acts in concert with glutamate as a mandatory co-agonist to set the level of receptor activity. It also regulates the receptor's trafficking and expression independently of glutamate. On 'unconventional' GluN1/GluN3 NMDARs, glycine acts as the sole agonist directly triggering opening of excitatory glycinergic channels recently shown to be physiologically relevant. On GluD receptors, d-serine on its own mediates non-ionotropic signaling involved in excitatory and inhibitory synaptogenesis, further reinforcing the concept of glutamate-insensitive iGluRs. Here we present an overview of our current knowledge on glycine and d-serine agonism in iGluRs emphasizing aspects related to molecular mechanisms, cellular function and pharmacological profile. The growing appreciation of the critical influence of glycine and d-serine on iGluR biology reshapes our understanding of iGluR signaling diversity and complexity, with important implications in neuropharmacology.
科研通智能强力驱动
Strongly Powered by AbleSci AI