Machine Learning-Based Prediction of Early Recurrence in Glioblastoma Patients: A Glance Towards Precision Medicine

医学 逻辑回归 背景(考古学) 随机森林 胶质母细胞瘤 特征选择 判别式 临床终点 机器学习 肿瘤科 人工智能 临床试验 内科学 计算机科学 古生物学 生物 癌症研究
作者
Giuseppe Maria Della Pepa,Valerio Maria Caccavella,Grazia Menna,Tamara Ius,Annamaria Auricchio,Giovanni Sabatino,Giuseppe La Rocca,S. Chiesa,Simona Gaudino,Enrico Marchese,Alessandro Olivi
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:89 (5): 873-883 被引量:6
标识
DOI:10.1093/neuros/nyab320
摘要

Ability to thrive and time-to-recurrence following treatment are important parameters to assess in patients with glioblastoma multiforme (GBM), given its dismal prognosis. Though there is an ongoing debate whether it can be considered an appropriate surrogate endpoint for overall survival in clinical trials, progression-free survival (PFS) is routinely used for clinical decision-making.To investigate whether machine learning (ML)-based models can reliably stratify newly diagnosed GBM patients into prognostic subclasses on PFS basis, identifying those at higher risk for an early recurrence (≤6 mo).Data were extracted from a multicentric database, according to the following eligibility criteria: histopathologically verified GBM and follow-up >12 mo: 474 patients met our inclusion criteria and were included in the analysis. Relevant demographic, clinical, molecular, and radiological variables were selected by a feature selection algorithm (Boruta) and used to build a ML-based model.Random forest prediction model, evaluated on an 80:20 split ratio, achieved an AUC of 0.81 (95% CI: 0.77; 0.83) demonstrating high discriminative ability. Optimizing the predictive value derived from the linear and nonlinear combinations of the selected input features, our model outperformed across all performance metrics multivariable logistic regression.A robust ML-based prediction model that identifies patients at high risk for early recurrence was successfully trained and internally validated. Considerable effort remains to integrate these predictions in a patient-centered care context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁婷发布了新的文献求助10
3秒前
5秒前
chiyu完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
xu完成签到,获得积分10
9秒前
Taylor发布了新的文献求助10
9秒前
10秒前
MiriamYu完成签到,获得积分10
11秒前
俗丨完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
ZWK发布了新的文献求助10
13秒前
华仔应助梁婷采纳,获得10
14秒前
14秒前
14秒前
yznfly应助科研通管家采纳,获得150
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得30
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
19秒前
暮寻屿苗完成签到 ,获得积分10
22秒前
情怀应助ZWK采纳,获得10
23秒前
24秒前
生木发布了新的文献求助10
26秒前
Agu完成签到,获得积分10
28秒前
29秒前
mingjie发布了新的文献求助10
30秒前
Agu发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
32秒前
Taylor完成签到,获得积分20
32秒前
Akim应助deibao采纳,获得10
32秒前
32秒前
葵葵完成签到,获得积分10
34秒前
Annie发布了新的文献求助10
36秒前
Akim应助和谐的笑柳采纳,获得10
37秒前
aldehyde应助风清扬采纳,获得100
38秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881284
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735602
捐赠科研通 3148665
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087