A portable NIR-system for mixture powdery food analysis using deep learning

均方误差 偏最小二乘回归 水准点(测量) 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 近红外光谱 特征(语言学) 人工神经网络 相关系数 数学 机器学习 统计 地理 物理 哲学 量子力学 语言学 大地测量学
作者
Lei Zhou,Lehao Tan,Chu Zhang,Nan Zhao,Yong He,Zhengjun Qiu
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:153: 112456-112456 被引量:28
标识
DOI:10.1016/j.lwt.2021.112456
摘要

The combination of near-infrared spectroscopy and machine intelligence has been an emerging nondestructive tool for powdery food evaluation. In this research, a novel portable system (defined as NIR-Spoon) was presented for simultaneously evaluating the mixing proportion of multi-mixture powdery food. Convolutional neural networks for multi-regression (CNN-MR) and that for feature selection (CNN-FS) were proposed for spectra processing. Multi-mixture powder samples, which contained one or more components including milk, rice, corn and wheat, were inspected by the NIR-Spoon. Results showed that the partial least squares regression (PLSR) model estimated the proportion of mixture with root mean square error (RMSE) of 0.059 and correlation coefficient (R2) of 0.938. The proposed CNN-MR realized a further improvement comparing to the benchmark PLSR method, with 0.035 for RMSE and 0.976 for R2. The CNN-MR still kept R2 of 0.970 based on 25 features selected by the CNN-FS algorithm. Moreover, the integrated load sensor could convert the proportion to the weight of each component. All hardware and software were integrated on the NIR-Spoon. Overall, the NIR-Spoon provided satisfactory accuracy and user-friendly mobile applications. It also has excellent potential to be extended for inspecting other kinds of food products in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxc167完成签到,获得积分10
1秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Mercury完成签到 ,获得积分10
5秒前
老迟到的土豆完成签到 ,获得积分10
5秒前
binshier完成签到,获得积分10
6秒前
yk完成签到 ,获得积分10
7秒前
yurunxintian完成签到,获得积分10
7秒前
酷酷的笔记本完成签到,获得积分10
8秒前
coolru完成签到 ,获得积分10
9秒前
10秒前
KYT2025完成签到,获得积分10
10秒前
斯文的飞雪完成签到,获得积分10
14秒前
mr_beard完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
Nicole完成签到 ,获得积分10
15秒前
王富贵完成签到,获得积分10
16秒前
高灵雨完成签到,获得积分10
16秒前
1101592875应助科研通管家采纳,获得10
16秒前
酷炫雁梅应助科研通管家采纳,获得10
16秒前
酷炫雁梅应助科研通管家采纳,获得10
17秒前
期期应助科研通管家采纳,获得10
17秒前
酷炫雁梅应助科研通管家采纳,获得10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
rayqiang完成签到,获得积分0
17秒前
酷炫雁梅应助科研通管家采纳,获得10
17秒前
酷炫雁梅应助科研通管家采纳,获得10
17秒前
1101592875应助科研通管家采纳,获得10
17秒前
17秒前
1101592875应助科研通管家采纳,获得10
17秒前
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
17秒前
在路上应助科研通管家采纳,获得20
17秒前
daheeeee完成签到,获得积分10
19秒前
金扇扇完成签到 ,获得积分10
19秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881688
求助须知:如何正确求助?哪些是违规求助? 3424032
关于积分的说明 10737130
捐赠科研通 3148939
什么是DOI,文献DOI怎么找? 1737729
邀请新用户注册赠送积分活动 838956
科研通“疑难数据库(出版商)”最低求助积分说明 784179