转化酶
葡萄糖计
大肠杆菌
色谱法
分析物
化学
检出限
蔗糖
免疫分析
生物化学
抗体
生物
基因
内分泌学
免疫学
糖尿病
作者
Haoran Huang,Guangying Zhao,Wenchao Dou
标识
DOI:10.1016/j.bios.2018.02.027
摘要
Here we innovate a portable and quantitative immunochromatographic assay (ICA) with a personal glucose meter (PGM) as readout for the detection of Escherichia coli O157:H7 (E. coli O157:H7). The carboxyl group coated Fe3O4 nanoparticles (MNPs) were synthesized by a one pot method and used as carriers of invertase and monoclonal antibody against E. coli O157:H7. Initially, the invertase and antibody double functionalized MNPs (Invertase-MNPs-IgG) conjugates were prepared and used as label probe in this assay system. Before laminating onto the baking card, the absorbent pad was soaked in sucrose solution and desiccated. MNPs produced brown band at the detection zone of the ICA when acting as direct labels. As they were also coupled with invertase, the invertase catalyzed the hydrolysis of sucrose on the absorbent pad into glucose, which was detected by the PGM. To increase the sensitivity, antibody functionalized MNPs were used to enrich E. coli O157:H7 from sample solution. The innovative aspect of this approach lies in the visualization and quantification of E. coli O157:H7 through Invertase-MNPs-IgG and the detection of glucose concentration using PGM. Although the feasibility is demonstrated using E. coli O157:H7 as a model analyte, this approach can be easily developed to be a universal analysis system and applied to detection of a wide variety of foodborne pathogens and protein biomarkers. This study proposed a qualitative and quantitative analysis device for the clinic diagnostics and food safety analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI