光时域反射计
灵敏度(控制系统)
小波
小波包分解
特征提取
假警报
管道(软件)
工程类
时域
网络数据包
实时计算
计算机科学
模式识别(心理学)
电子工程
人工智能
小波变换
光纤传感器
光纤
电信
计算机视觉
光纤分路器
计算机安全
机械工程
作者
Huijuan Wu,Ya Qian,Wei Zhang,Chenghao Tang
出处
期刊:Photonic Sensors
[Springer Nature]
日期:2017-09-20
卷期号:7 (4): 305-310
被引量:110
标识
DOI:10.1007/s13320-017-0360-1
摘要
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
科研通智能强力驱动
Strongly Powered by AbleSci AI