Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions

流水车间调度 数学优化 计算机科学 调度(生产过程) 优化算法 多目标优化 作业车间调度 算法 数学 嵌入式系统 布线(电子设计自动化)
作者
Junqing Li,Hongshi Sang,Yuyan Han,Cun-gang Wang,Kaizhou Gao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:181: 584-598 被引量:211
标识
DOI:10.1016/j.jclepro.2018.02.004
摘要

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘林完成签到,获得积分10
刚刚
传奇3应助Cici采纳,获得10
刚刚
wanci应助Dou采纳,获得10
刚刚
dove00完成签到,获得积分10
刚刚
1秒前
谙良完成签到,获得积分10
1秒前
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
Flechazo完成签到,获得积分10
2秒前
3秒前
浮游应助kk131采纳,获得10
3秒前
saywhy完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
kdkddk发布了新的文献求助10
6秒前
catcher456完成签到,获得积分20
6秒前
6秒前
小学生完成签到 ,获得积分10
6秒前
6秒前
科研通AI6应助秘密采纳,获得10
7秒前
wzjs完成签到,获得积分10
7秒前
心海发布了新的文献求助10
7秒前
Liu完成签到,获得积分10
7秒前
花花草草完成签到,获得积分10
7秒前
善学以致用应助xixi采纳,获得10
8秒前
douer完成签到,获得积分10
8秒前
autotrophs-ping完成签到,获得积分10
8秒前
8秒前
JJS完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
斯文败类应助卡卡卡采纳,获得30
10秒前
烟花应助快乐寄风采纳,获得10
10秒前
Summer完成签到,获得积分10
10秒前
Irene完成签到,获得积分10
10秒前
10秒前
别凡发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4891829
求助须知:如何正确求助?哪些是违规求助? 4175088
关于积分的说明 12959183
捐赠科研通 3937482
什么是DOI,文献DOI怎么找? 2160184
邀请新用户注册赠送积分活动 1178465
关于科研通互助平台的介绍 1084074