亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How does chunking help working memory?

组块(心理学) 计算机科学 发音抑制 召回 工作记忆 序列位置效应 自然语言处理 短时记忆 人工智能 免费召回 语音识别 认知 认知心理学 心理学 神经科学
作者
Mirko Thalmann,Alessandra S. Souza,Klaus Oberauer
出处
期刊:Journal of Experimental Psychology: Learning, Memory and Cognition [American Psychological Association]
卷期号:45 (1): 37-55 被引量:174
标识
DOI:10.1037/xlm0000578
摘要

Chunking is the recoding of smaller units of information into larger, familiar units. Chunking is often assumed to help bypassing the limited capacity of working memory (WM). We investigate how chunks are used in WM tasks, addressing three questions: (a) Does chunking reduce the load on WM? Across four experiments chunking benefits were found not only for recall of the chunked but also of other not-chunked information concurrently held in WM, supporting the assumption that chunking reduces load. (b) Is the chunking benefit independent of chunk size? The chunking benefit was independent of chunk size only if the chunks were composed of unique elements, so that each chunk could be replaced by its first element (Experiment 1), but not when several chunks consisted of overlapping sets of elements, disabling this replacement strategy (Experiments 2 and 3). The chunk-size effect is not due to differences in rehearsal duration as it persisted when participants were required to perform articulatory suppression (Experiment 3). Hence, WM capacity is not limited to a fixed number of chunks regardless of their size. (c) Does the chunking benefit depend on the serial position of the chunk? Chunks in early list positions improved recall of other, not-chunked material, but chunks at the end of the list did not. We conclude that a chunk reduces the load on WM via retrieval of a compact chunk representation from long-term memory that replaces the representations of individual elements of the chunk. This frees up capacity for subsequently encoded material. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助丽优采纳,获得10
2秒前
汉堡包应助jjc采纳,获得10
3秒前
Nichols完成签到,获得积分10
4秒前
田様应助高兴电脑采纳,获得10
6秒前
7秒前
10秒前
丽优发布了新的文献求助10
12秒前
12秒前
16秒前
机智如霜发布了新的文献求助10
16秒前
沉默的谷丝完成签到,获得积分10
17秒前
满意的西牛完成签到,获得积分10
25秒前
机智如霜完成签到,获得积分10
28秒前
39秒前
50秒前
huangbs完成签到,获得积分10
54秒前
欢呼雁风发布了新的文献求助10
56秒前
今后应助小刘采纳,获得10
59秒前
顾矜应助丽优采纳,获得10
1分钟前
1分钟前
丽优发布了新的文献求助10
1分钟前
阿丕啊呸完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
scl完成签到,获得积分10
1分钟前
小刘发布了新的文献求助10
2分钟前
xx完成签到 ,获得积分10
2分钟前
小刘完成签到,获得积分10
2分钟前
jane123发布了新的文献求助10
2分钟前
drirshad发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
领导范儿应助3sigma采纳,获得10
3分钟前
浮游应助丽优采纳,获得10
3分钟前
Akim应助炸鸡叔采纳,获得30
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426517
求助须知:如何正确求助?哪些是违规求助? 4540234
关于积分的说明 14171885
捐赠科研通 4458011
什么是DOI,文献DOI怎么找? 2444764
邀请新用户注册赠送积分活动 1435841
关于科研通互助平台的介绍 1413268