Liver Fibrosis: Deep Convolutional Neural Network for Staging by Using Gadoxetic Acid–enhanced Hepatobiliary Phase MR Images

钆酸 医学 阶段(地层学) 肝活检 秩相关 磁共振成像 接收机工作特性 放射科 胃肠病学 活检 核医学 内科学 纤维化 钆DTPA 古生物学 机器学习 生物 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Akira Kunimatsu,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:287 (1): 146-155 被引量:183
标识
DOI:10.1148/radiol.2017171928
摘要

Purpose To investigate the performance of a deep convolutional neural network (DCNN) model in the staging of liver fibrosis using gadoxetic acid-enhanced hepatobiliary phase magnetic resonance (MR) imaging. Materials and Methods This retrospective study included patients for whom input data (hepatobiliary phase MR images, static magnetic field of the imaging unit, and hepatitis B and C virus testing results available, either positive or negative) and reference standard data (liver fibrosis stage evaluated from biopsy or surgical specimens obtained within 6 months of the MR examinations) were available were assigned to the training (534 patients) or the test (100 patients) group. For the training group (54, 53, 81, 113, and 233 patients with fibrosis stages F0, F1, F2, F3, and F4, respectively; mean patient age, 67.4 ± 9.7 years; 388 men and 146 women), MR images with three different section levels were augmented 90-fold (rotated, parallel-shifted, brightness-changed and contrast-changed images were generated; a total of 144 180 images). Supervised training was performed by using the DCNN model to minimize the difference between the output data (fibrosis score obtained through deep learning [FDL score]) and liver fibrosis stage. The performance of the DCNN model was evaluated in the test group (10, 10, 15, 20, and 45 patients with fibrosis stages F0, F1, F2, F3, and F4, respectively; mean patient age, 66.8 years ± 10.7; 71 male patients and 29 female patients) with receiver operating characteristic (ROC) analyses. Results The FDL score was correlated significantly with fibrosis stage (Spearman rank correlation coefficient: 0.63; P < .001). Fibrosis stages F4, F3, and F2 were diagnosed with areas under the ROC curve of 0.84, 0.84, and 0.85, respectively. Conclusion The DCNN model exhibited a high diagnostic performance in the staging of liver fibrosis. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Yuanyuan采纳,获得10
1秒前
1秒前
丘比特应助cj采纳,获得10
1秒前
1秒前
花楹应助海棠先雪采纳,获得10
2秒前
2秒前
wyz9477发布了新的文献求助10
3秒前
3秒前
徐妮完成签到,获得积分20
3秒前
小斌发布了新的文献求助10
4秒前
4秒前
浮华应助ytolll采纳,获得10
5秒前
喜悦荧应助Veronica Mew采纳,获得10
5秒前
领导范儿应助付2采纳,获得10
6秒前
爱吃烤肉的兔子完成签到,获得积分10
6秒前
wa发布了新的文献求助10
6秒前
大爱仙尊完成签到 ,获得积分20
7秒前
核桃应助酆天采纳,获得10
7秒前
Whassupww完成签到,获得积分10
7秒前
8秒前
快乐的紫寒完成签到,获得积分10
8秒前
willing-li完成签到,获得积分10
8秒前
puppynorio完成签到,获得积分10
8秒前
8秒前
1111y发布了新的文献求助10
8秒前
8秒前
9秒前
doomedQL完成签到,获得积分10
9秒前
9秒前
9秒前
Hello应助猪猪hero采纳,获得10
10秒前
李雨欣完成签到 ,获得积分10
10秒前
10秒前
ding应助今天摸了吗采纳,获得10
10秒前
Anna完成签到 ,获得积分10
11秒前
12秒前
12秒前
little完成签到,获得积分10
12秒前
风中以南发布了新的文献求助10
13秒前
许言完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
菊と刀 日本文化の型 230
Wie wollen wir leben? 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4363737
求助须知:如何正确求助?哪些是违规求助? 3863875
关于积分的说明 12049778
捐赠科研通 3506776
什么是DOI,文献DOI怎么找? 1924148
邀请新用户注册赠送积分活动 966419
科研通“疑难数据库(出版商)”最低求助积分说明 865691