Human-level control through deep reinforcement learning

强化学习 人工智能 计算机科学 多样性(控制论) 控制(管理) 感知 人机交互 深度学习 机器学习 神经科学 生物
作者
Volodymyr Mnih,Koray Kavukcuoglu,David Silver,Andrei A. Rusu,Joel Veness,Marc G. Bellemare,Alex Graves,Martin Riedmiller,Andreas Fidjeland,Georg Ostrovski,Stig Petersen,Charles Beattie,Amir Sadik,Ioannis Antonoglou,Helen King,Dharshan Kumaran,Daan Wierstra,Shane Legg,Demis Hassabis
出处
期刊:Nature [Nature Portfolio]
卷期号:518 (7540): 529-533 被引量:26673
标识
DOI:10.1038/nature14236
摘要

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘秋尽完成签到,获得积分10
刚刚
júpiter发布了新的文献求助10
1秒前
英专小白完成签到,获得积分10
2秒前
2秒前
Yan发布了新的文献求助10
2秒前
2秒前
Tanya完成签到 ,获得积分10
2秒前
罗勍发布了新的文献求助10
3秒前
小于发布了新的文献求助200
4秒前
吴珺慈完成签到 ,获得积分10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
ZXH发布了新的文献求助10
10秒前
坦率白萱完成签到,获得积分10
10秒前
爱做实验的泡利完成签到,获得积分10
12秒前
13秒前
13秒前
lilei完成签到,获得积分10
13秒前
霸气的代天完成签到,获得积分10
14秒前
隐形曼青应助ll采纳,获得10
15秒前
16秒前
17秒前
xuxu完成签到,获得积分20
17秒前
TL发布了新的文献求助10
18秒前
18秒前
Koalas应助贾111采纳,获得10
18秒前
18秒前
19秒前
大白菜芥末菜完成签到,获得积分10
19秒前
fzdzc完成签到 ,获得积分10
19秒前
NexusExplorer应助起朱楼采纳,获得10
20秒前
直率谷蕊发布了新的文献求助10
20秒前
haojinxiu发布了新的文献求助10
21秒前
楼亦玉完成签到,获得积分10
21秒前
顺利秋尽应助苹果白凡采纳,获得10
22秒前
Hero完成签到,获得积分10
22秒前
AoAoo发布了新的文献求助10
23秒前
徐梁家八蛋完成签到,获得积分10
23秒前
岑梨愁发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035867
求助须知:如何正确求助?哪些是违规求助? 4268837
关于积分的说明 13308595
捐赠科研通 4079629
什么是DOI,文献DOI怎么找? 2231666
邀请新用户注册赠送积分活动 1239798
关于科研通互助平台的介绍 1165743