Prediction of protein cellular attributes using pseudo‐amino acid composition

伪氨基酸组成 氨基酸 蛋白质测序 计算生物学 序列(生物学) 计算机科学 作文(语言) 肽序列 生物系统 生物化学 生物 算法 基因 语言学 哲学 二肽
作者
Kuo‐Chen Chou
出处
期刊:Proteins [Wiley]
卷期号:43 (3): 246-255 被引量:1838
标识
DOI:10.1002/prot.1035
摘要

Abstract The cellular attributes of a protein, such as which compartment of a cell it belongs to and how it is associated with the lipid bilayer of an organelle, are closely correlated with its biological functions. The success of human genome project and the rapid increase in the number of protein sequences entering into data bank have stimulated a challenging frontier: How to develop a fast and accurate method to predict the cellular attributes of a protein based on its amino acid sequence? The existing algorithms for predicting these attributes were all based on the amino acid composition in which no sequence order effect was taken into account. To improve the prediction quality, it is necessary to incorporate such an effect. However, the number of possible patterns for protein sequences is extremely large, which has posed a formidable difficulty for realizing this goal. To deal with such a difficulty, the pseudo‐amino acid composition is introduced. It is a combination of a set of discrete sequence correlation factors and the 20 components of the conventional amino acid composition. A remarkable improvement in prediction quality has been observed by using the pseudo‐amino acid composition. The success rates of prediction thus obtained are so far the highest for the same classification schemes and same data sets. It has not escaped from our notice that the concept of pseudo‐amino acid composition as well as its mathematical framework and biochemical implication may also have a notable impact on improving the prediction quality of other protein features. Proteins 2001;43:246–255. © 2001 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
郭星星发布了新的文献求助10
2秒前
羲月完成签到,获得积分10
3秒前
李健应助大闪电采纳,获得10
5秒前
刘小明完成签到,获得积分10
6秒前
馅饼完成签到,获得积分10
6秒前
duoduo完成签到,获得积分10
7秒前
Nancy发布了新的文献求助20
8秒前
Xenia完成签到 ,获得积分10
9秒前
钱烨华发布了新的文献求助20
11秒前
12秒前
萝卜脚踝完成签到,获得积分20
13秒前
13秒前
科研通AI5应助复杂念梦采纳,获得10
14秒前
16秒前
shuxue完成签到,获得积分10
17秒前
keke发布了新的文献求助20
17秒前
开朗以亦完成签到,获得积分10
18秒前
lemon完成签到,获得积分10
18秒前
毛毛妈完成签到,获得积分10
19秒前
嘀咕嘀咕发布了新的文献求助10
19秒前
ziliz完成签到,获得积分10
20秒前
Lucas应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得30
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
lilycat完成签到,获得积分10
22秒前
开朗以亦发布了新的文献求助10
22秒前
七月星河完成签到 ,获得积分10
23秒前
噜噜噜噜噜完成签到,获得积分10
28秒前
科研通AI2S应助keira采纳,获得10
30秒前
33秒前
33秒前
香蕉觅云应助坚强枫采纳,获得10
33秒前
38秒前
隐形曼青应助nancy采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522