已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Successful learning with multiple graphical representations and self-explanation prompts.

心理学 代表(政治) 钥匙(锁) 数学教育 计算机科学 计算机安全 政治 政治学 法学
作者
Martina A. Rau,Vincent Aleven,Nikol Rummel
出处
期刊:Journal of Educational Psychology [American Psychological Association]
卷期号:107 (1): 30-46 被引量:85
标识
DOI:10.1037/a0037211
摘要

Research shows that multiple external representations can significantly enhance students’ learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple graphical representations (MGRs) in addition to text. An important open question is whether the use of MGRs leads to better learning than a single graphical representation (SGR) when the MGRs are presented separately, 1-by-1 across consecutive problems, accompanied by text and numbers. A further question is whether providing support for students to relate the different representations to the key concepts that they depict can enhance their benefit from MGRs. We investigated these questions in 2 classroom experiments that involved problem solving practice with an intelligent tutoring system for fractions. Based on 112 sixth-grade students, Experiment 1 investigated whether MGRs lead to better learning outcomes than 1 commonly used SGR, and whether this effect can be enhanced by prompting students to self-explain key concepts depicted by the graphical representations. Based on 152 fourth- and fifth-grade students, Experiment 2 investigated whether the advantage of MGRs depends on the specific representation chosen for the SGR condition because prior research suggests that some SGRs might promote learning more than others. Both experiments demonstrate that MGRs lead to better conceptual learning than an SGR, provided that students are supported in relating graphical representations to key concepts. We extend research on multiple external representations by demonstrating that MGRs (presented in addition to text and 1-by-1 across consecutive problems) can enhance learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南寻发布了新的文献求助10
1秒前
oscar完成签到,获得积分10
1秒前
重要幻丝发布了新的文献求助10
1秒前
呵呵完成签到,获得积分10
2秒前
西奥完成签到 ,获得积分10
2秒前
犹豫疾完成签到,获得积分10
2秒前
master-f完成签到 ,获得积分10
2秒前
环走鱼尾纹完成签到 ,获得积分10
2秒前
顺利白柏完成签到 ,获得积分10
2秒前
yun发布了新的文献求助30
3秒前
安详凡完成签到 ,获得积分10
3秒前
5秒前
平常的羊完成签到 ,获得积分10
5秒前
研友_ZG4ml8完成签到 ,获得积分10
7秒前
南寻完成签到,获得积分10
10秒前
端庄半凡完成签到 ,获得积分0
10秒前
橙海晚风完成签到 ,获得积分10
11秒前
阳光萌萌发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
彭于晏应助FMK采纳,获得10
14秒前
ftl完成签到 ,获得积分10
15秒前
粥粥完成签到 ,获得积分10
15秒前
郭文钦完成签到 ,获得积分10
19秒前
19秒前
20秒前
乔雅完成签到,获得积分10
20秒前
iui飞完成签到,获得积分10
21秒前
23秒前
笑笑完成签到 ,获得积分10
23秒前
233发布了新的文献求助10
24秒前
小马甲应助YYiijj采纳,获得10
24秒前
shutong完成签到,获得积分10
24秒前
25秒前
25秒前
飞翔的梦完成签到,获得积分10
25秒前
26秒前
NexusExplorer应助邱半仙采纳,获得10
26秒前
眼里的萧萧雨完成签到,获得积分20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090182
求助须知:如何正确求助?哪些是违规求助? 4304774
关于积分的说明 13414844
捐赠科研通 4130466
什么是DOI,文献DOI怎么找? 2262342
邀请新用户注册赠送积分活动 1266229
关于科研通互助平台的介绍 1200912