Successful learning with multiple graphical representations and self-explanation prompts.

心理学 代表(政治) 钥匙(锁) 数学教育 计算机科学 计算机安全 政治 政治学 法学
作者
Martina A. Rau,Vincent Aleven,Nikol Rummel
出处
期刊:Journal of Educational Psychology [American Psychological Association]
卷期号:107 (1): 30-46 被引量:88
标识
DOI:10.1037/a0037211
摘要

Research shows that multiple external representations can significantly enhance students’ learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple graphical representations (MGRs) in addition to text. An important open question is whether the use of MGRs leads to better learning than a single graphical representation (SGR) when the MGRs are presented separately, 1-by-1 across consecutive problems, accompanied by text and numbers. A further question is whether providing support for students to relate the different representations to the key concepts that they depict can enhance their benefit from MGRs. We investigated these questions in 2 classroom experiments that involved problem solving practice with an intelligent tutoring system for fractions. Based on 112 sixth-grade students, Experiment 1 investigated whether MGRs lead to better learning outcomes than 1 commonly used SGR, and whether this effect can be enhanced by prompting students to self-explain key concepts depicted by the graphical representations. Based on 152 fourth- and fifth-grade students, Experiment 2 investigated whether the advantage of MGRs depends on the specific representation chosen for the SGR condition because prior research suggests that some SGRs might promote learning more than others. Both experiments demonstrate that MGRs lead to better conceptual learning than an SGR, provided that students are supported in relating graphical representations to key concepts. We extend research on multiple external representations by demonstrating that MGRs (presented in addition to text and 1-by-1 across consecutive problems) can enhance learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
infinite完成签到 ,获得积分10
刚刚
2秒前
科研通AI6应助AAA建材王哥采纳,获得10
3秒前
4秒前
spwan应助somin采纳,获得10
5秒前
6秒前
要减肥的冥完成签到,获得积分10
7秒前
Komorebi完成签到 ,获得积分10
7秒前
7秒前
7秒前
wyx完成签到,获得积分20
8秒前
8秒前
9秒前
CodeCraft应助渴望者采纳,获得10
9秒前
浮游应助一支笔画天下采纳,获得10
11秒前
11秒前
12秒前
111完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
丘比特应助乐观的颦采纳,获得10
12秒前
离雪应助yyz采纳,获得10
13秒前
雅阳发布了新的文献求助10
13秒前
完美誉完成签到 ,获得积分10
13秒前
不可能吃香菜完成签到,获得积分10
13秒前
15秒前
15秒前
一生平安给一生平安的求助进行了留言
16秒前
111完成签到,获得积分10
16秒前
17秒前
17秒前
大草履虫完成签到,获得积分10
17秒前
Orange应助莫愁采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
cslghe应助科研通管家采纳,获得10
20秒前
XiHuanChi完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533015
求助须知:如何正确求助?哪些是违规求助? 4621501
关于积分的说明 14578711
捐赠科研通 4561512
什么是DOI,文献DOI怎么找? 2499339
邀请新用户注册赠送积分活动 1479240
关于科研通互助平台的介绍 1450485