转分化
Toll样受体
化学
受体
去甲基化
癌症研究
细胞生物学
免疫学
生物
基因
DNA甲基化
体外
先天免疫系统
基因表达
生物化学
作者
Marzena Ciechomska,Steven O’Reilly,Stefan Przyborski,Fiona Oakley,Katarzyna Bogunia‐Kubik,Jacob M. van Laar
摘要
To investigate whether epigenetic changes can modulate monocytes to produce tissue inhibitor of metalloproteinases 1 (TIMP-1) via Fra-2 (an activator protein 1 [AP-1] family member), a novel downstream mediator that promotes fibrogenesis.AP-1 transcription factors and TIMP-1 expression were measured in monocytes from systemic sclerosis (SSc) patients and healthy controls. Involvement of Fra-2 in the regulation of TIMP-1 following treatment with Toll-like receptor 8 (TLR-8) agonist was investigated using a luciferase activity assay and chromatin immunoprecipitation (ChIP) analysis. Expression of TIMP-1 and Fra-2 was determined in response to TLR-8 treatment and to different histone modifications, including 3'-deazaneplanocin (DZNep) and apicidin. Fibroblasts from healthy controls were cocultured with DZNep plus TLR-8-treated healthy control monocytes.Up-regulation of Fra-2 was detected in bleomycin-challenged mice and in skin biopsy samples from SSc patients. Enhanced expression of Fra-2 and TIMP-1 was correlated in SSc monocytes (P = 0.021). The expression of Fra-1 was significantly reduced (P = 0.037) in SSc monocytes. Inhibiting AP-1 activity reduced TIMP-1 production in TLR-8-stimulated monocytes from healthy controls and SSc patients. ChIP experiments revealed binding of Fra-2 to the TIMP-1 promoter. Stimulation with DZNep plus TLR-8 enhanced Fra-2 and TIMP-1 expression in healthy control monocytes, whereas TLR-8 plus apicidin repressed Fra-2 and TIMP-1 expression. Finally, healthy control monocytes treated with DZNep plus TLR-8 induced strong production of α-smooth muscle actin in dermal fibroblasts, which was inhibited by TIMP-1-blocking antibody.These data demonstrate a novel role of histone demethylation induced by DZNep on Fra-2-mediated TIMP-1 production by monocytes in the presence of TLR-8 agonist. This consequently orchestrates the transdifferentiation of fibroblasts, a key event in the pathogenesis of SSc.
科研通智能强力驱动
Strongly Powered by AbleSci AI