Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning

先发制人 计算机科学 强化学习 作业车间调度 单调速率调度 两级调度 公平份额计划 动态优先级调度 调度(生产过程) 流水车间调度 分布式计算 马尔可夫决策过程 工作车间 数学优化 人工智能 工业工程 运筹学 工程类 马尔可夫过程 地铁列车时刻表 操作系统 统计 数学
作者
Xiaohan Wang,Zhang Li,Ting-Yu Lin,Chun Zhao,Kunyu Wang,Zhen Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:77: 102324-102324 被引量:85
标识
DOI:10.1016/j.rcim.2022.102324
摘要

In smart manufacturing, robots gradually replace traditional machines as new processing units, which have significantly liberated laborers and reduced manufacturing expenditure. However, manufacturing resources are usually limited so that the preemption relationship exists among robots. Under this circumstance, job scheduling puts forward higher requirements on accuracy and generalization. To this end, this paper proposes a scheduling algorithm to solve job scheduling problems in a resource preemption environment with multi-agent reinforcement learning. The resource preemption environment is modeled as a decentralized partially observable Markov decision process, where each job is regarded as an intelligent agent that chooses an available robot according to its current partial observation. Based on this modeling, a multi-agent scheduling architecture is constructed to handle the high-dimension action space issue caused by multi-task simultaneous scheduling. Besides, multi-agent reinforcement learning is employed to learn both the decision-making policy of each agent and the cooperation between job agents. This paper is novel in addressing the scheduling problem in a resource preemption environment and solving the job shop scheduling problem with multi-agent reinforcement learning. The experiments of the case study indicate that our proposed method outperforms the traditional rule-based methods and the distributed-agent reinforcement learning method in total makespan, training stability, and model generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zas完成签到,获得积分10
刚刚
跳跃的小林完成签到,获得积分10
刚刚
1秒前
1秒前
YY再摆烂完成签到,获得积分10
1秒前
香蕉觅云应助心楠采纳,获得30
1秒前
Nancy完成签到 ,获得积分10
2秒前
烟花应助hunajx采纳,获得10
2秒前
3秒前
jjyrush发布了新的文献求助10
4秒前
科研通AI2S应助Georges-09采纳,获得10
4秒前
苹果亦巧发布了新的文献求助30
5秒前
在水一方应助醉生梦死采纳,获得10
5秒前
lucky发布了新的文献求助10
5秒前
顾矜应助浪子采纳,获得10
6秒前
wanci应助林飞云采纳,获得10
7秒前
yhgz完成签到,获得积分10
7秒前
英俊的铭应助超炫酷的采纳,获得10
7秒前
shu应助王木兮采纳,获得10
7秒前
8秒前
8秒前
淡然的芷荷完成签到 ,获得积分10
8秒前
残剑月应助激动的严青采纳,获得10
8秒前
当归完成签到,获得积分10
9秒前
ASHES发布了新的文献求助30
10秒前
c182484455完成签到,获得积分10
10秒前
JHJ完成签到,获得积分10
11秒前
在水一方应助风风风风采纳,获得10
11秒前
甘棠发布了新的文献求助10
12秒前
12秒前
xiao双月完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
13秒前
酷波er应助ins采纳,获得10
13秒前
白云发布了新的文献求助10
14秒前
eyu完成签到,获得积分10
14秒前
李爱国应助fdpb采纳,获得10
16秒前
16秒前
jjyrush完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266