Large-scale functional connectivity predicts cognitive impairment related to type 2 diabetes mellitus

蒙特利尔认知评估 痴呆 医学 认知 2型糖尿病 判别式 接收机工作特性 认知障碍 听力学 物理医学与康复 内科学 糖尿病 人工智能 精神科 计算机科学 疾病 内分泌学
作者
An‐Ping Shi,Ying Yu,Bo Hu,Yuting Li,Wen Wang,Guangbin Cui
出处
期刊:World Journal of Diabetes [Baishideng Publishing Group Co (World Journal of Diabetes)]
卷期号:13 (2): 110-125 被引量:4
标识
DOI:10.4239/wjd.v13.i2.110
摘要

Large-scale functional connectivity (LSFC) patterns in the brain have unique intrinsic characteristics. Abnormal LSFC patterns have been found in patients with dementia, as well as in those with mild cognitive impairment (MCI), and these patterns predicted their cognitive performance. It has been reported that patients with type 2 diabetes mellitus (T2DM) may develop MCI that could progress to dementia. We investigated whether we could adopt LSFC patterns as discriminative features to predict the cognitive function of patients with T2DM, using connectome-based predictive modeling (CPM) and a support vector machine.To investigate the utility of LSFC for predicting cognitive impairment related to T2DM more accurately and reliably.Resting-state functional magnetic resonance images were derived from 42 patients with T2DM and 24 healthy controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Patients with T2DM were divided into two groups, according to the presence (T2DM-C; n = 16) or absence (T2DM-NC; n = 26) of MCI. Brain regions were marked using Harvard Oxford (HOA-112), automated anatomical labeling (AAL-116), and 264-region functional (Power-264) atlases. LSFC biomarkers for predicting MoCA scores were identified using a new CPM technique. Subsequently, we used a support vector machine based on LSFC patterns for among-group differentiation. The area under the receiver operating characteristic curve determined the appearance of the classification.CPM could predict the MoCA scores in patients with T2DM (Pearson's correlation coefficient between predicted and actual MoCA scores, r = 0.32, P=0.0066 [HOA-112 atlas]; r = 0.32, P=0.0078 [AAL-116 atlas]; r = 0.42, P=0.0038 [Power-264 atlas]), indicating that LSFC patterns represent cognition-level measures in these patients. Positive (anti-correlated) LSFC networks based on the Power-264 atlas showed the best predictive performance; moreover, we observed new brain regions of interest associated with T2DM-related cognition. The area under the receiver operating characteristic curve values (T2DM-NC group vs. T2DM-C group) were 0.65-0.70, with LSFC matrices based on HOA-112 and Power-264 atlases having the highest value (0.70). Most discriminative and attractive LSFCs were related to the default mode network, limbic system, and basal ganglia.LSFC provides neuroimaging-based information that may be useful in detecting MCI early and accurately in patients with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渔夫完成签到,获得积分10
刚刚
丘比特应助chengxu采纳,获得10
1秒前
2秒前
2秒前
李文广发布了新的文献求助10
3秒前
安静的元绿完成签到,获得积分20
3秒前
自觉鹰完成签到,获得积分10
4秒前
无妄发布了新的文献求助10
4秒前
5秒前
Jasper应助毅诚菌采纳,获得10
5秒前
迈克老狼完成签到,获得积分10
5秒前
清秀的冰淇淋完成签到,获得积分10
5秒前
5秒前
Xu完成签到,获得积分10
6秒前
老实芭蕉发布了新的文献求助10
6秒前
潇洒的纸飞机完成签到 ,获得积分10
7秒前
瘦瘦青荷发布了新的文献求助10
7秒前
石语芙完成签到,获得积分10
7秒前
欣慰阑悦完成签到,获得积分20
9秒前
JamesPei应助焱冰采纳,获得10
9秒前
11秒前
12秒前
华仔应助李文广采纳,获得10
13秒前
忧心的海燕完成签到,获得积分10
13秒前
13秒前
14秒前
Sy_paul发布了新的文献求助10
14秒前
石语芙发布了新的文献求助10
15秒前
汉堡包应助老实芭蕉采纳,获得10
15秒前
Medicine发布了新的文献求助10
16秒前
18秒前
18秒前
dd发布了新的文献求助10
19秒前
21秒前
21秒前
kkk完成签到,获得积分10
21秒前
付竹女乔发布了新的文献求助10
22秒前
23秒前
25秒前
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381603
求助须知:如何正确求助?哪些是违规求助? 4504833
关于积分的说明 14019613
捐赠科研通 4414148
什么是DOI,文献DOI怎么找? 2424618
邀请新用户注册赠送积分活动 1417618
关于科研通互助平台的介绍 1395411