2型糖尿病
机器学习
医学
人工智能
背景(考古学)
因果推理
二甲双胍
人口
计算机科学
糖尿病
数学
统计
内分泌学
古生物学
环境卫生
生物
作者
Sumeet Kalia,Olli Saarela,Tao Chen,Braden O’Neill,Christopher Meaney,Jessica Gronsbell,Babak Aliarzadeh,Ervin Sejdić,Michael Escobar,Rahim Moineddin,Conrad Pow,Frank Sullivan,Michelle Greiver
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2022-08-01
卷期号:26 (8): 4197-4206
被引量:1
标识
DOI:10.1109/jbhi.2022.3175862
摘要
As different scientific disciplines begin to converge on machine learning for causal inference, we demonstrate the application of machine learning algorithms in the context of longitudinal causal estimation using electronic health records. Our aim is to formulate a marginal structural model for estimating diabetes care provisions in which we envisioned hypothetical (i.e. counterfactual) dynamic treatment regimes using a combination of drug therapies to manage diabetes: metformin, sulfonylurea and SGLT-2i. The binary outcome of diabetes care provisions was defined using a composite measure of chronic disease prevention and screening elements [27] including (i) primary care visit, (ii) blood pressure, (iii) weight, (iv) hemoglobin A1c, (v) lipid, (vi) ACR, (vii) eGFR and (viii) statin medication. We used several statistical learning algorithms to describe causal relationships between the prescription of three common classes of diabetes medications and quality of diabetes care using the electronic health records contained in National Diabetes Repository. In particular, we generated an ensemble of statistical learning algorithms using the SuperLearner framework based on the following base learners: (i) least absolute shrinkage and selection operator, (ii) ridge regression, (iii) elastic net, (iv) random forest, (v) gradient boosting machines, and (vi) neural network. Each statistical learning algorithm was fitted using the pseudo-population generated from the marginalization of the time-dependent confounding process. Covariate balance was assessed using the longitudinal (i.e. cumulative-time product) stabilized weights with calibrated restrictions. Our results indicated that the treatment drop-in cohorts (with respect to metformin, sulfonylurea and SGLT-2i) may have improved diabetes care provisions in relation to treatment naïve (i.e. no treatment) cohort. As a clinical utility, we hope that this article will facilitate discussions around the prevention of adverse chronic outcomes associated with type II diabetes through the improvement of diabetes care provisions in primary care.
科研通智能强力驱动
Strongly Powered by AbleSci AI