Marginal Structural Models Using Calibrated Weights With SuperLearner: Application to Type II Diabetes Cohort

2型糖尿病 机器学习 医学 人工智能 背景(考古学) 因果推理 二甲双胍 人口 计算机科学 糖尿病 数学 统计 内分泌学 古生物学 环境卫生 生物
作者
Sumeet Kalia,Olli Saarela,Tao Chen,Braden O’Neill,Christopher Meaney,Jessica Gronsbell,Babak Aliarzadeh,Ervin Sejdić,Michael Escobar,Rahim Moineddin,Conrad Pow,Frank Sullivan,Michelle Greiver
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4197-4206 被引量:1
标识
DOI:10.1109/jbhi.2022.3175862
摘要

As different scientific disciplines begin to converge on machine learning for causal inference, we demonstrate the application of machine learning algorithms in the context of longitudinal causal estimation using electronic health records. Our aim is to formulate a marginal structural model for estimating diabetes care provisions in which we envisioned hypothetical (i.e. counterfactual) dynamic treatment regimes using a combination of drug therapies to manage diabetes: metformin, sulfonylurea and SGLT-2i. The binary outcome of diabetes care provisions was defined using a composite measure of chronic disease prevention and screening elements [27] including (i) primary care visit, (ii) blood pressure, (iii) weight, (iv) hemoglobin A1c, (v) lipid, (vi) ACR, (vii) eGFR and (viii) statin medication. We used several statistical learning algorithms to describe causal relationships between the prescription of three common classes of diabetes medications and quality of diabetes care using the electronic health records contained in National Diabetes Repository. In particular, we generated an ensemble of statistical learning algorithms using the SuperLearner framework based on the following base learners: (i) least absolute shrinkage and selection operator, (ii) ridge regression, (iii) elastic net, (iv) random forest, (v) gradient boosting machines, and (vi) neural network. Each statistical learning algorithm was fitted using the pseudo-population generated from the marginalization of the time-dependent confounding process. Covariate balance was assessed using the longitudinal (i.e. cumulative-time product) stabilized weights with calibrated restrictions. Our results indicated that the treatment drop-in cohorts (with respect to metformin, sulfonylurea and SGLT-2i) may have improved diabetes care provisions in relation to treatment naïve (i.e. no treatment) cohort. As a clinical utility, we hope that this article will facilitate discussions around the prevention of adverse chronic outcomes associated with type II diabetes through the improvement of diabetes care provisions in primary care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪落你看不见完成签到,获得积分10
刚刚
周三完成签到,获得积分10
1秒前
2秒前
充电宝应助1111采纳,获得10
3秒前
zhao完成签到 ,获得积分10
4秒前
Allenzz关注了科研通微信公众号
5秒前
AYY完成签到,获得积分10
5秒前
英勇的薯片完成签到,获得积分10
5秒前
赘婿应助霸气凡白采纳,获得10
5秒前
5秒前
细心蚂蚁发布了新的文献求助10
7秒前
8秒前
包子发布了新的文献求助10
8秒前
玛卡巴卡完成签到,获得积分10
9秒前
科研通AI5应助一枚小豆采纳,获得10
9秒前
852应助英勇的薯片采纳,获得10
10秒前
10秒前
11秒前
玛卡巴卡发布了新的文献求助10
13秒前
只要平凡完成签到 ,获得积分10
14秒前
1111发布了新的文献求助10
15秒前
小土豆完成签到 ,获得积分10
15秒前
大力元霜完成签到,获得积分10
17秒前
e746700020完成签到,获得积分10
19秒前
20秒前
ljq完成签到 ,获得积分10
20秒前
21秒前
整齐泥猴桃完成签到,获得积分10
21秒前
快乐的奕涵完成签到,获得积分10
23秒前
小远远完成签到,获得积分10
23秒前
23秒前
小芳不止妖娆完成签到,获得积分10
25秒前
默默地读文献应助baifan采纳,获得10
26秒前
Allenzz发布了新的文献求助20
26秒前
小蘑菇应助熊熊采纳,获得10
26秒前
完美世界应助ling_lz采纳,获得10
27秒前
27秒前
强砸完成签到,获得积分10
28秒前
ARES2发布了新的文献求助10
28秒前
lhy12345完成签到 ,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093