亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Marginal Structural Models Using Calibrated Weights With SuperLearner: Application to Type II Diabetes Cohort

2型糖尿病 机器学习 医学 人工智能 背景(考古学) 因果推理 二甲双胍 人口 计算机科学 糖尿病 数学 统计 内分泌学 古生物学 环境卫生 生物
作者
Sumeet Kalia,Olli Saarela,Tao Chen,Braden O’Neill,Christopher Meaney,Jessica Gronsbell,Ervin Sejdić,Michael Escobar,Babak Aliarzadeh,Rahim Moineddin,Conrad Pow,Frank Sullivan,Michelle Greiver
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4197-4206 被引量:6
标识
DOI:10.1109/jbhi.2022.3175862
摘要

As different scientific disciplines begin to converge on machine learning for causal inference, we demonstrate the application of machine learning algorithms in the context of longitudinal causal estimation using electronic health records. Our aim is to formulate a marginal structural model for estimating diabetes care provisions in which we envisioned hypothetical (i.e. counterfactual) dynamic treatment regimes using a combination of drug therapies to manage diabetes: metformin, sulfonylurea and SGLT-2i. The binary outcome of diabetes care provisions was defined using a composite measure of chronic disease prevention and screening elements [27] including (i) primary care visit, (ii) blood pressure, (iii) weight, (iv) hemoglobin A1c, (v) lipid, (vi) ACR, (vii) eGFR and (viii) statin medication. We used several statistical learning algorithms to describe causal relationships between the prescription of three common classes of diabetes medications and quality of diabetes care using the electronic health records contained in National Diabetes Repository. In particular, we generated an ensemble of statistical learning algorithms using the SuperLearner framework based on the following base learners: (i) least absolute shrinkage and selection operator, (ii) ridge regression, (iii) elastic net, (iv) random forest, (v) gradient boosting machines, and (vi) neural network. Each statistical learning algorithm was fitted using the pseudo-population generated from the marginalization of the time-dependent confounding process. Covariate balance was assessed using the longitudinal (i.e. cumulative-time product) stabilized weights with calibrated restrictions. Our results indicated that the treatment drop-in cohorts (with respect to metformin, sulfonylurea and SGLT-2i) may have improved diabetes care provisions in relation to treatment naïve (i.e. no treatment) cohort. As a clinical utility, we hope that this article will facilitate discussions around the prevention of adverse chronic outcomes associated with type II diabetes through the improvement of diabetes care provisions in primary care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYP发布了新的文献求助10
1秒前
3秒前
海海发布了新的文献求助10
7秒前
充电宝应助科研通管家采纳,获得10
19秒前
海海完成签到,获得积分10
22秒前
雨渺清空完成签到 ,获得积分10
27秒前
28秒前
47秒前
nini发布了新的文献求助10
52秒前
orixero应助Frose采纳,获得10
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
时崎狂三发布了新的文献求助10
1分钟前
Jyy77完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
marco发布了新的文献求助10
1分钟前
WilliamJarvis完成签到 ,获得积分10
1分钟前
1分钟前
HEIKU应助marco采纳,获得10
1分钟前
HEIKU应助marco采纳,获得10
1分钟前
搜集达人应助marco采纳,获得10
1分钟前
闫冉发布了新的文献求助10
1分钟前
1分钟前
marco完成签到,获得积分20
1分钟前
无花果应助时崎狂三采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
敏静完成签到,获得积分10
1分钟前
科研通AI5应助闫冉采纳,获得10
2分钟前
2分钟前
2分钟前
爱撒娇的博超完成签到,获得积分20
2分钟前
2分钟前
科研通AI2S应助甜美的秋尽采纳,获得20
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
zzz发布了新的文献求助10
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819910
求助须知:如何正确求助?哪些是违规求助? 3362776
关于积分的说明 10418792
捐赠科研通 3081157
什么是DOI,文献DOI怎么找? 1694980
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522