小气候
热舒适性
疗养院
热应力
相对湿度
环境科学
早晨
气象学
环境卫生
地理
建筑工程
大气科学
医学
护理部
工程类
考古
地质学
内科学
作者
Hua Zong,Jiao Wang,Ting Zhou,Jiarui Sun,Xuehong Chen
出处
期刊:Buildings
[Multidisciplinary Digital Publishing Institute]
日期:2022-06-26
卷期号:12 (7): 905-905
被引量:13
标识
DOI:10.3390/buildings12070905
摘要
Recently, the requirements regarding the environment of nursing homes are high, because the elderly are a vulnerable group with limited adaptive capacity to respond to transient environmental change. This paper presents a field investigation on the influence of transient thermal comfort changes between the indoor and outdoor spaces (i.e., air temperature (Ta), solar radiation (SR), relative humidity (RH), wind speed (WS), and the thermal comfort indices of Universal Thermal Index (UTCI)) on the willingness of the elderly to use outdoor spaces of the Wanxia nursing home of Chengdu City. Results indicated that, in summer, the mean UTCI values of indoor and corridor spaces corresponded to the level of moderate heat stress, while those of road and garden corresponded to the strong heat stress level. Road and garden spaces even showed moderate heat stress in spring. Approximately 28.93% (139) of the elderly living here used outdoor spaces every day. The morning period (from 9:00 a.m. to 10:00 a.m.) was the elderly’s favorited period for using outdoor spaces in seasons. The microclimatic transient differences between indoor and outdoor spaces ranged from 0.47 °C to 2.93 °C (|ΔTa|), from 86.09 W/m2 to 206.76 W/m2 (|ΔSR|), from 5.29% to 14.76% (ΔRH), from 0.01 m/s to 0.07 m/s (|ΔWS|), and from 0.25 °C to 2.25 °C (ΔUTCI). These big microclimate differences could cause enormous health risks for the elderly in the process of indoor and outdoor space conversion. The minimal transient change occurred between corridors and indoors. Pearson correlation analysis indicated ΔTa and ΔRH between indoor and outdoor spaces were the primary meteorological factors that influenced the elderly’s willing to use outdoor spaces. The elderly preferred to live in a constant Ta and RH environment. Only when the ΔTa and ΔRH are small enough to resemble a steady-state (ΔUTCI ≤ 0.5 °C), ΔWS and ΔSI could affect the elderly’s choice of using outdoor space. Optimal design strategies were put forward for reducing the transient differences between indoor and outdoor microclimates to inspire the elderly to use outdoor spaces safely, including improving outdoor canopy coverage and indoor mechanical ventilation.
科研通智能强力驱动
Strongly Powered by AbleSci AI