吸附
材料科学
乙烯
产量(工程)
连接器
化学工程
烯烃纤维
惰性
有机化学
聚合物
化学
催化作用
复合材料
计算机科学
工程类
操作系统
作者
Peng Hu,Jialang Hu,Hao Wang,Hao Liu,Jie Zhou,Yao Liu,Yongqing Wang,Hongbing Ji
标识
DOI:10.1021/acsami.1c25005
摘要
Efficient purification of ethylene (C2H4) from ethane (C2H6) is a crucial but daunting task for the chemical industry given their similar physical natures and molecular dimensions. Reversed capture of C2H6 from C2H6/C2H4 dual-mixtures can be expected to directly yield high-purity C2H4 through a one-step separation unit, but it remains a daunting challenge. Here, we skillfully target an unusual "electrostatic-driven linker microrotation" (EDLM) in a Zr-MOF through coupling dual-ligands having electron-withdrawing/donating groups (e.g., F and CH3 motifs). EDLM triggered microrotation of linker geometry and screening sites not only enhanced structural rigidity and hydrophobic nature, etc., but also effectively purified C2H4 through reversely trapping C2H6. Under ambient conditions, 1 kg of activated 2 adsorbents directly produces 7.2 L of C2H4 with over 99.9%+ purity in a single breakthrough operation starting from the equimolar C2H6/C2H4 cracked mixtures. Geometrical models and simulations have revealed that EDLM-derived H-bonding interaction and microrotation of linker geometry, synergistically customized C2H6-selective screening sites and pore inert for reversed C2H6 capture and improved surface hydrophobicity. Adsorption isotherms, modeling simulations, and breakthrough tests based on pressure swing adsorption (PSA) conditions have jointly elucidated the underlying separation properties for C2H4 purification. The enhanced hydrophobic nature, cycling durability, and separation property awarded 2 a new benchmark adsorbent to purify the olefin/paraffin mixtures.
科研通智能强力驱动
Strongly Powered by AbleSci AI