Automatic measurement of fetal head circumference using a novel GCN-assisted deep convolutional network

胎头 人工智能 计算机科学 超声波 卷积神经网络 计算机视觉 模式识别(心理学) 算法 胎儿 物理 声学 怀孕 遗传学 生物
作者
Xin Wang,Weibo Wang,Zongwei Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105515-105515 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.105515
摘要

The growth of the fetus can be effectively monitored by measuring the fetal head circumference (HC) in ultrasound images. Moreover, it is the key to assessing the fetus's health. Ultrasound fetal head image boundary is blurred. The ultrasound sound shadow results in a partial absence of the skull in the image. The amniotic fluid and uterine wall form a structure similar to the head texture and grayscale. All these factors result in challenges to ultrasound fetal head edge detection. The new convolutional neural network (CNN) named GAC Net was proposed in this paper, which can effectively solve the above problems. GAC Net is an end-to-end network model constructed by the encoder and decoder. In order to suppress the interference of ultrasound image quality defects on the HC measurement, the graph convolutional network (GCN) module was added to the connection channel between the encoder and the decoder. The new attention mechanism enhanced the network's ability to perceive border areas. Experiments were performed on the HC18 fetal head ultrasound image data set. The following objective evaluation indicators were calculated, including the Hausdorff distance (HD), the absolute difference (AD), the difference (DF), and the Dice similarity coefficient (DSC) of head circumference. Experimental results showed that GAC-Net had an HD of 1.22 ± 0.71 mm, an AD of 1.75 ± 1.71 mm, a DF of 0.19 ± 2.32 mm, and a DSC of 98.21 ± 1.16%. The overall performance of the proposed algorithm exceeded the state-of-the-art methods, which fully proved the effectiveness of the GAC Net presented in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sususuper完成签到 ,获得积分10
刚刚
小二郎应助徐徐采纳,获得10
刚刚
YH应助LaTeXer采纳,获得150
1秒前
CipherSage应助JKL采纳,获得10
1秒前
2秒前
好运连连完成签到,获得积分10
3秒前
3秒前
Akim应助欣喜的映雁采纳,获得10
4秒前
native发布了新的文献求助10
4秒前
科研通AI5应助浩浩大人采纳,获得10
4秒前
CC1219应助WANG采纳,获得10
4秒前
哒哒李完成签到,获得积分10
4秒前
5秒前
5秒前
长孙幼荷发布了新的文献求助20
6秒前
7秒前
7秒前
濠哥妈咪发布了新的文献求助10
8秒前
9秒前
CipherSage应助Duang采纳,获得10
10秒前
10秒前
11秒前
南小槿发布了新的文献求助10
11秒前
11秒前
11秒前
NexusExplorer应助周小鱼采纳,获得10
12秒前
白冷之发布了新的文献求助30
12秒前
烟花应助Willing采纳,获得10
13秒前
充电宝应助啊薇儿采纳,获得30
13秒前
能干妙竹发布了新的文献求助10
13秒前
15秒前
16秒前
xTATx发布了新的文献求助10
16秒前
徐徐发布了新的文献求助10
16秒前
17秒前
17秒前
任性斑马完成签到,获得积分10
18秒前
乐乐应助shirly采纳,获得10
19秒前
萝卜特乐发布了新的文献求助10
19秒前
Mercury应助俭朴的小熊猫采纳,获得30
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599