清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Long short-term memory based semi-supervised encoder—decoder for early prediction of failures in self-lubricating bearings

方位(导航) 润滑 计算机科学 编码器 往复运动 停工期 信号(编程语言) 人工智能 机械工程 工程类 操作系统 程序设计语言
作者
Vigneashwara Pandiyan,Mehdi Akeddar,Josef Prost,Georg Vorlaufer,Markus Varga,Kilian Wasmer
出处
期刊:Friction [Springer Nature]
卷期号:11 (1): 109-124 被引量:20
标识
DOI:10.1007/s40544-021-0584-3
摘要

Abstract The existing knowledge regarding the interfacial forces, lubrication, and wear of bearings in real-world operation has significantly improved their designs over time, allowing for prolonged service life. As a result, self-lubricating bearings have become a viable alternative to traditional bearing designs in industrial machines. However, wear mechanisms are still inevitable and occur progressively in self-lubricating bearings, as characterized by the loss of the lubrication film and seizure. Therefore, monitoring the stages of the wear states in these components will help to impart the necessary countermeasures to reduce the machine maintenance downtime. This article proposes a methodology for using a long short-term memory (LSTM)-based encoder—decoder architecture on interfacial force signatures to detect abnormal regimes, aiming to provide early predictions of failure in self-lubricating sliding contacts even before they occur. Reciprocating sliding experiments were performed using a self-lubricating bronze bushing and steel shaft journal in a custom-built transversally oscillating tribometer setup. The force signatures corresponding to each cycle of the reciprocating sliding motion in the normal regime were used as inputs to train the encoder—decoder architecture, so as to reconstruct any new signal of the normal regime with the minimum error. With this semi-supervised training exercise, the force signatures corresponding to the abnormal regime could be differentiated from the normal regime, as their reconstruction errors would be very high. During the validation procedure for the proposed LSTM-based encoder—decoder model, the model predicted the force signals corresponding to the normal and abnormal regimes with an accuracy of 97%. In addition, a visualization of the reconstruction error across the entire force signature showed noticeable patterns in the reconstruction error when temporally decoded before the actual critical failure point, making it possible to be used for early predictions of failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心每一天完成签到 ,获得积分10
1秒前
widesky777完成签到 ,获得积分0
23秒前
谭凯文完成签到 ,获得积分10
29秒前
ceeray23发布了新的文献求助20
29秒前
32秒前
星辰大海应助科研通管家采纳,获得30
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
FXe发布了新的文献求助10
1分钟前
1分钟前
默默的骁完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助30
1分钟前
默默的骁发布了新的文献求助10
1分钟前
华仔应助默默的骁采纳,获得10
1分钟前
sting完成签到,获得积分10
2分钟前
2分钟前
冷静的尔竹完成签到,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
管夜白完成签到 ,获得积分10
3分钟前
舒适的淇完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
喜悦的唇彩完成签到,获得积分10
3分钟前
筱奇发布了新的文献求助20
3分钟前
3分钟前
huhu发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
huhu完成签到,获得积分10
4分钟前
筱奇完成签到,获得积分10
4分钟前
合不着完成签到 ,获得积分10
4分钟前
光头饼完成签到,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
李爱国应助xun采纳,获得10
4分钟前
4分钟前
xun发布了新的文献求助10
5分钟前
xun完成签到,获得积分20
5分钟前
xue完成签到 ,获得积分10
5分钟前
蛋白积聚完成签到,获得积分10
5分钟前
sudeep完成签到,获得积分10
5分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771581
捐赠科研通 4614599
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551