亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discrimination of three Angelica herbs using LC-QTOF/MS combined with multivariate analysis

当归 主成分分析 草本植物 草药 中草药 传统医学 四极飞行时间 化学 色谱法 数学 质谱法 医学 中医药 统计 串联质谱法 替代医学 病理
作者
Su‐Jin Ahn,Hyung Joo Kim,Ayoung Lee,Seung-Sik Min,Eunmi Kim,Suncheun Kim
出处
期刊:Food Additives & Contaminants: Part A [Taylor & Francis]
卷期号:39 (7): 1195-1205 被引量:2
标识
DOI:10.1080/19440049.2022.2069291
摘要

Angelica gigas, a popular medicinal herb in Korea, is locally called Danggui; this name is similarly used for Angelica acutiloba and Angelica sinensis, which are also sold in the retail market. These three herbs have differing therapeutic effects and should be used according to their prescribed purposes. In some retail markets, though, all three herbs are known by the same common name rather than a scientific name and can therefore be confused with each other. In particular, in the case of powdered products, intentional or unintentional wrong sales activity by the seller may occur. In this study, non-targeted analysis was performed using liquid chromatography quadrupole time-of-flight mass spectrometry to discriminate between the three Angelica herbs, and marker compounds were identified by principal component analysis. Principal component analysis was applied to the whole dataset with the variables being sample name, peak name (m/z with retention time), and ion intensity extracted in advance by peak finding, alignment, and filtering. All three herbs were visually and clearly differentiated in the score plot, and the marker compounds that contributed to their discrimination were found in the loading plot through principal component variable grouping (PCVG). Among the marker compounds, coumarins contributed to the classification of A. gigas, and phthalides contributed to the classification of A. sinensis. The three Angelica herbs were well discriminated from each other. Within the three Angelica species investigated, marker compounds can determine the species of even powdered or extracted samples that cannot be visually identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
库里强发布了新的文献求助10
14秒前
46秒前
共享精神应助仁爱的帽子采纳,获得10
1分钟前
1分钟前
WebCasa应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
yayika完成签到,获得积分10
1分钟前
两袖清风完成签到 ,获得积分10
1分钟前
WebCasa发布了新的文献求助10
2分钟前
李健的小迷弟应助huang采纳,获得10
2分钟前
3分钟前
huang完成签到,获得积分10
3分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
huang发布了新的文献求助10
3分钟前
3分钟前
4分钟前
5分钟前
5分钟前
WebCasa应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
Forever完成签到,获得积分10
5分钟前
Ethan完成签到,获得积分10
5分钟前
石头完成签到 ,获得积分10
5分钟前
小郭发布了新的文献求助20
5分钟前
liuliqiong完成签到,获得积分10
6分钟前
7分钟前
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
搜集达人应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
丁三问发布了新的文献求助10
9分钟前
Arthur完成签到 ,获得积分10
9分钟前
丁三问完成签到,获得积分10
10分钟前
小蘑菇应助库里强采纳,获得10
10分钟前
10分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070