Idiopathic Pulmonary Fibrosis Mortality Risk Prediction Based on Artificial Intelligence: The CTPF Model

DLCO公司 特发性肺纤维化 医学 阶段(地层学) 人工智能 纤维化 肺功能测试 内科学 机器学习 肺功能 计算机科学 扩散能力 生物 古生物学
作者
Xuening Wu,Chengsheng Yin,Xianqiu Chen,Yuan Zhang,Yiliang Su,Jingyun Shi,Dong Weng,Xing Jiang,Aihong Zhang,Wenqiang Zhang,Huiping Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:10
标识
DOI:10.3389/fphar.2022.878764
摘要

Background: Idiopathic pulmonary fibrosis (IPF) needs a precise prediction method for its prognosis. This study took advantage of artificial intelligence (AI) deep learning to develop a new mortality risk prediction model for IPF patients. Methods: We established an artificial intelligence honeycomb segmentation system that segmented the honeycomb tissue area automatically from 102 manually labeled (by radiologists) cases of IPF patients' CT images. The percentage of honeycomb in the lung was calculated as the CT fibrosis score (CTS). The severity of the patients was evaluated by pulmonary function and physiological feature (PF) parameters (including FVC%pred, DLco%pred, SpO2%, age, and gender). Another 206 IPF cases were randomly divided into a training set (n = 165) and a verification set (n = 41) to calculate the fibrosis percentage in each case by the AI system mentioned previously. Then, using a competing risk (Fine-Gray) proportional hazards model, a risk score model was created according to the training set's patient data and used the validation data set to validate this model. Result: The final risk prediction model (CTPF) was established, and it included the CT stages and the PF (pulmonary function and physiological features) grades. The CT stages were defined into three stages: stage I (CTS≤5), stage II (5 < CTS<25), and stage III (≥25). The PF grades were classified into mild (a, 0-3 points), moderate (b, 4-6 points), and severe (c, 7-10 points). The AUC index and Briers scores at 1, 2, and 3 years in the training set were as follows: 74.3 [63.2,85.4], 8.6 [2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and 72.8 [58.3,87.3], 18.2 [11.9,24.6]. The results of the validation sets were similar and suggested that high-risk patients had significantly higher mortality rates. Conclusion: This CTPF model with AI technology can predict mortality risk in IPF precisely.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WT完成签到,获得积分10
刚刚
11应助xiaohuang采纳,获得10
2秒前
3秒前
滴追完成签到,获得积分20
4秒前
科目三应助自觉的凡旋采纳,获得10
6秒前
6秒前
6秒前
顾矜应助yue采纳,获得10
9秒前
霸气南珍应助徐执默采纳,获得20
9秒前
9秒前
11发布了新的文献求助10
9秒前
jianghu发布了新的文献求助10
11秒前
情怀应助lqnb668采纳,获得10
11秒前
慢走不宋女士完成签到 ,获得积分10
12秒前
田様应助一条裸游的鱼采纳,获得10
12秒前
行知发布了新的文献求助10
13秒前
14秒前
十四完成签到,获得积分10
15秒前
陈秋迎发布了新的文献求助10
21秒前
CipherSage应助jianghu采纳,获得10
21秒前
迪克大完成签到,获得积分10
24秒前
25秒前
Jasper应助绿树成荫采纳,获得10
25秒前
aladi1011发布了新的文献求助10
25秒前
腼腆的南晴完成签到 ,获得积分10
28秒前
晴天发布了新的文献求助10
30秒前
科研小江发布了新的文献求助10
30秒前
32秒前
33秒前
年华完成签到,获得积分10
33秒前
aladi1011完成签到,获得积分10
37秒前
XS_QI发布了新的文献求助10
37秒前
晴天完成签到,获得积分10
38秒前
地沙坦完成签到,获得积分20
38秒前
tao完成签到 ,获得积分10
39秒前
缓慢的饼干完成签到,获得积分10
41秒前
一一完成签到,获得积分10
42秒前
42秒前
汉堡包应助wang采纳,获得10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5862998
求助须知:如何正确求助?哪些是违规求助? 6387696
关于积分的说明 15647533
捐赠科研通 4976811
什么是DOI,文献DOI怎么找? 2684753
邀请新用户注册赠送积分活动 1627943
关于科研通互助平台的介绍 1585593